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NOISE CONTROL AND SPEECH     
INTELLIGIBILITY IMPROVEMENT OF                      

A TOLL PLAZA 
Introduction  
 Vehicular toll roads are one 
component of many municipal transportation 
systems.  Personnel working at toll 
collection plazas are exposed to extended, 
continuous traffic noise.  Sustained noise 
levels of this nature may cause hearing loss, 
induce fatigue or stress, and reduce worker 
productivity.  The annoyance and discomfort 
related to continuous noise exposure may 
create an unpleasant working condition and 
may affect the hospitality of the tollbooth 
operators and their attitude toward 
customers.  Furthermore, the noise level may 
hinder communication with customers and 
may compromise safety.  Reduction of the 
noise level and an improvement in speech 
intelligibility are highly desirable.   
 Open communication windows, 
often used in tollbooths, facilitate essential 

communication and monetary transactions.  
Typical transactions between toll collectors 
and patrons involve charge cards, commuter 
cards, toll tickets, and the exchange of cash.  
Direct visual and physical contact between 
patrons and attendants is made possible by 
the open communication window.  One 
disadvantage is that vehicle noise generated 
outside the booth is easily transmitted into 
the booth via the open window.  The booth 
structure acts as a partially open enclosure, 
which may amplify road noise due to sound 
reflections off of rigid surfaces and 
reverberation within the enclosure. 
 The objective of this research is to 
lower the noise levels experienced by toll 
collection workers and increase the speech 
intelligibility of the tollbooth environment. 

Findings  
Contributions of the study include the 
following: 
 
1. Surveys of toll plaza employees 

confirm that traffic noise creates an 
unpleasant work environment and 
frequently hampers communication. 

 
2. A toll plaza was modeled using a 

beam tracing method.  Toll plaza model 
predictions indicate that implementation 

of reasonable passive noise control 
solutions will reduce the sound level by 
approximately 3 dB.  This is a 
noticeable but rather modest decrease.  
Results suggest that significant noise 
reductions can only be achieved by 
reducing the direct sound field. 

 
3. Active noise control (ANC) systems 

were investigated to control the direct 
field.  The potential of ANC systems to 
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reduce low frequency sounds within 
reverberant, partially open enclosures 
has been demonstrated in previous 
studies.  Improvements in speech 
intelligibility may be possible when 
dominant low frequency sounds in 
traffic noise mask speech signals and 
reduce intelligibility.   

 
4. The noise attenuation of ANC 

systems was investigated.  The noise 
reduction ratings (NRR) for the ANC 
systems were highly dependent upon the 
system configurations.  A sealed ANC 
headset achieved a NRR value of 24 dB, 
while some of the open systems 
achieved NRR values near 0 dB.  
Passive components, such as 
circumaural earcups, result in the 
greater attenuation found in closed 
headset.   

 
5. The speech intelligibility at the toll 

plaza was investigated using 
standardized methods.  Traffic noise 
conditions at the toll plaza were 
recorded.  In the presence of traffic 
noise, the speech intelligibility was poor 
even for the highest vocal efforts.   

 
6. The effects of active noise control 

systems on speech intelligibility were 
investigated.  While some of the 
systems offer significant attenuation of 
noise, none of the systems improved the 
speech intelligibility significantly.  The 
systems are not adaptive and do not 
directly alter the signal to noise ratio.  
The results suggest that low frequency 
traffic noise masking of higher 
frequency communication sounds is not 
as detrimental as in-band masking.  The 
best systems had the greatest overall 
reduction, which suggests that 
overloading effects are important. 

 
7.  Innovative systems were modeled to 

improve intelligibility at the toll plaza.  
A sealed ANC headset with a dipole 
directional microphone input and level 
reduction provides 20% more of the 
speech cues to a listener under high 
vocal efforts.  A higher order directional 
microphone input, creates a good 
communication situation (75% and 
greater of the speech cues available to 
the listener).  

Implementation  
 Predictions of the performance of a 
hypothetical modified ANC system resulted 
in a significant increase in speech 
intelligibility.  The next step is to build a 
number of prototype systems.  The systems 
would be built to further investigate 
performance.  In addition to the directional 
microphones and single channel feedback 
active noise control algorithms, exploration 
of adaptive noise control algorithms would 
be beneficial.  Adaptive algorithms produce 
different system transfer functions for 
different signals.  By selectively attenuating 
noise and passing speech, the signal to noise 
ratio could be further increased.  
Investigation into cost and comfort issues 
should be addressed. 

 The toll plaza model demonstrated that 
passive noise control solutions, which 
address the reflected sound field, do not 
substantially reduce the noise level.  The 
modeling approach did not account for 
coherent reflections that cause reverberation 
and resonance.  Due to the statistically 
random nature of vehicle noise, it is a 
reasonable approximation to use a source 
model assuming incoherent waves where 
phase is neglected.  If resonance conditions 
occur at the toll plaza, placement of 
absorbing material may have a more 
dramatic effect than predicted by the model.  
It is suggested that the possible existence of 
resonance conditions be investigated in a 
subsequent study.  On-site measurements at 
many locations throughout the toll plaza 
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could be used to investigate the presence of 
standing waves.  The results of the beam 
tracing method could be validated through 
on-site measurements.  
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IMPLEMENTATION REPORT

Sealed ANC headsets with directional microphone input produced a significant

increase in speech intelligibility.  Subsequent investigations into modified ANC headsets

that improve the signal to noise ratio and thereby the speech intelligibility are suggested.

Advanced concepts should integrate adaptive algorithms to achieve the project goals.

Feedforward algorithms are adaptive and therefore behave differently for different input

signals.  As a starting point, an adaptive algorithm may be placed between the directional

microphone and the sealed ANC headset configuration.  If implemented properly, the filter

could provide significant improvements in speech intelligibility by selectively attenuate

traffic noise and preserving speech at a level that does not overload the ear.  Alternatively,

the single channel feedback algorithm of existing ANC control headsets could be replaced

by an adaptive ANC algorithm to yield similar results.  Testing of various embodiments

with respect to comfort should be performed.  Investigation into cost and reliability should

be addressed.

The toll plaza model demonstrated that passive noise control solutions which

address the reflected sound field, do not substantially reduce the noise level.  The modeling

approach did not account for coherent reflections that cause reverberation and resonance.

Due to the statistically random nature of vehicle noise, it is a reasonable approximation to

use a source model assuming incoherent waves where phase is neglected.  If resonance

conditions occur at the toll plaza, placement of absorbing material may have a more dramatic

effect than predicted by the model.  It is suggested that the possible existence of resonance
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conditions be investigated in a subsequent study.  On-site measurements at many locations

throughout the toll plaza could be used to investigate the presence of standing waves.  The

results of the beam tracing method could be validated through on-site measurements.
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1.  INTRODUCTION

Vehicular toll roads are one component of many municipal transportation systems.

Toll collection facilities often include automated lanes and lanes with personnel working

inside a booth.  The automated lanes serve customers with exact change or electronic meters

while the manual lanes serve customers with commercial vehicles and customers needing

change or directions.

Personnel working at toll collection plazas are exposed to extended, continuous

traffic noise.  Previous studies of noise exposure levels for attendants working in Indiana

toll collection plazas indicated that the equivalent A-weighted sound pressure levels

experienced at the toll collection booths range between 52.5 to 84.2 dB (Arnold, 1998a,

1998b).  While these values are below Occupational Safety and Health Administration

(OSHA) regulations for engineering and administrative controls, they suggest that in certain

cases a hearing conservation program may be required (National Archives and Records

Administration, 2001a).  In addition, exposure to a duration greater than eight hours, as in

overtime labor or extended work shifts, may require further action.

Sustained noise levels of this nature may cause hearing loss, induce fatigue or stress,

and reduce worker productivity.  The annoyance and discomfort related to continuous noise

exposure may create an unpleasant working condition and may affect the hospitality of the

tollbooth operators and their attitude toward customers.  Furthermore, the noise level may

hinder communication with customers and may compromise safety.  Reduction of the noise

level and an improvement in speech intelligibility are highly desirable.
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Toll collection booths have certain features which are necessary for the business of

toll collections but allow the transmission of noise.  Open communication windows, often

used in tollbooths, facilitate essential communication and monetary transactions.  Typical

transactions between toll collectors and patrons involve charge cards, commuter cards, toll

tickets, and the exchange of cash.  Direct visual and physical contact between patrons and

attendants is made possible by the open communication window.  One disadvantage is that

vehicle noise generated outside the booth is easily transmitted into the booth via the open

window.  The booth structure acts as a partially open enclosure which may amplify road

noise due to sound reflections off of rigid surfaces and reverberation within the enclosure.

In this investigation, the reduction of noise level and improvement of speech

intelligibility at the location of the tollbooth attendant were studied.  The thesis in organized

as follows.  Chapter 2 is a summary of the background material and preliminary

investigation work.  The beam tracing implementation used to model the sound field of the

Portage Barrier Toll Plaza is presented in Chapter 3.  Chapter 4 contains a discussion of

different toll plaza configurations and the results of the beam tracing sound field analysis

for each configuration.  In Chapter 5, the speech intelligibility characteristics of active noise

control systems are discussed.  Conclusions and recommendations are presented in Chapter

6.
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2.  BACKGROUND

Noise levels in many different industrial settings are high enough to be a health

concern and to interfere with communication.  Industrial environments with structures and

obstacles that cause sound to reflect, have sound fields that are similar to that within partially

open enclosures.  Though the primary application of interest for this research study involves

tollbooths, the fundamental results are relevant to a general class of problems with similar

characteristics.  In this chapter, a summary of the background work and details of the

literature review are included to place the subsequent work in the appropriate context.

2.1  Toll Collection Plaza Description

A typical toll collections facility, the Portage Barrier Toll Collection Plaza, was

selected as the test location due to its high traffic volume and high noise levels.  The toll

plaza is located at milepost 24 on US toll road Interstate-90 which is west of Portage,

Indiana.  Interstate-90 facilitates traffic movement in east and west directions.  Detailed

information can be found in the blue prints of the facility (Indiana Toll Road, 1982).  A

photograph of the toll plaza is shown in Figure 2.1.

The toll plaza contains eleven tollbooths of two different sizes serving, at times, 12

lanes of traffic.  The smaller tollbooths measure 3.05 meters long (10 ft) by 1.52 meters

wide (5 ft) by 2.44 meters high (8 ft) and are located on the extremes of the plaza to serve

traffic movement in one direction.  The larger tollbooths measure 4.57 meters long (15 ft)
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by 1.52 meters wide (5 ft) by 2.44 meters high (8 ft) and are located at the center of the

plaza to serve traffic movement in either direction.  The structure of the booths is made of

aluminum and stainless steel.  Each booth has two doorway openings.  The main door is

open to assist patrons of the toll road.  The secondary door is near the back of the booth; it

is open when climatic conditions require.  For the larger booths, the secondary door may

also be used for toll collection.  The booths are set upon raised concrete curb footings.  In

line with the booths, concrete crash impact barriers have been positioned in front of and

behind the booth.  The lanes are surfaced in concrete.  Approximately 4.88 meters (16 ft)

above the ground is an overhead canopy made of a tubular metal framework with corrugated

metal sheets.  The canopy has three main sections.  The north and south ends of the canopy

are characterized by a high and steep angle opening towards oncoming traffic while the

center section is in a symmetric "A" configuration.  Supporting the framework of the

canopy are twelve large concrete columns located between a few of the booths and the

respective crash impact barriers.

A preliminary inspection revealed that the booths were well built and did not appear

to substantially contribute to the noise.  Sound transmission through the openings of the

tollbooths seemed to be the main noise issue.
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Figure 2.1: Photo of the north end of the Portage Barrier Toll Collection Plaza.  View is
facing east.

2.2  Attendant Surveys

Two surveys were administered to tollbooth employees working at the Portage

Barrier Toll Collection Plaza.  Questions were designed to be non biased and non leading.

The surveys were administered in a blind and anonymous manner.  Twenty nine toll plaza

employees completed each survey.  A copy of the surveys and a table showings the results

are included in the Appendix.  Further details of the surveys may be found in the article by

Feist, Mongeau, and Bernhard (2001).

2.2.1  First Attendant Survey
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The first survey was used to evaluate the employees' subjective response to the

ambient noise levels in their occupational environment.  A graphical display of the results is

shown in Figure 2.2 and Figure 2.3.  The results confirm that ambient noise is perceived as

undesirable and impedes communication between operators and patrons.  While the noise

does not appear to induce physiological effects such as headaches, it may be responsible for

temporary threshold shifts which are a preliminary indicator of hearing damage.  In

addition, the most annoying sources of noise were identified as semi-trucks and

motorcycles during braking, acceleration, and idling.  It is noteworthy that some of the most

annoying sounds involve low frequency emissions.

Figure 2.2:  Evaluation of working conditions by tollbooth attendants.
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Figure 2.3: Rating of the annoyance of vehicle sound sources.  Ratings were averaged
among all respondents.  A rating of 5.0 indicates that the respondents
Strongly Agree that the noise emission of the particular vehicle is annoying,
a rating of 3.0 indicates that the respondents are Undecided, and a rating of
1.0 indicates that the respondents Strongly Disagree that the noise emission
of the particular vehicle is annoying.

2.2.2  Second Attendant Survey

In the second survey, tollbooth attendants were asked to evaluate a specific type of

open ear active noise control (ANC) headphone and rate its performance with respect to

noise reduction, speech intelligibility, and comfort.  A graphical display of the results can be

found in Figure 2.4.  The results show that the active headset was effective at reducing

ambient noise, but its ability to improve speech intelligibility could not be demonstrated.

While the headset was thought to be uncomfortable by those surveyed, the results suggest

that part of the discomfort was psychological and related to the appearance of the device.
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Figure 2.4:  Evaluation of an ANC headset.

2.2.3  Survey Conclusions

The finding that environmental noise creates an unpleasant work environment and

hinders communication substantiates the concerns of the project sponsors and justifies

further investigation into potential noise control solutions for partially open enclosures.  The

toll plaza will be modeled to investigate the nature of the sound field and the performance of

potential solutions.

Though the ANC headset did not clearly improve speech intelligibility, further

investigation is reasonable due to the positive noise reduction performance.  The type of

ANC headset tested was a NCT Inc., Noise Buster Extreme.  It is an open ear device built

for listening to music through a portable entertainment system.  Open ear headsets do not

substantially suppress ambient noise through passive approaches such as circumaural cups.
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Given its consumer focus, the attenuation performance is not as strong as that of more

industrial designs.  Investigation of this and other ANC systems will focus upon noise

attenuation and speech intelligibility performance.

2.3  Potential Solutions

Potential noise control methods can be subdivided into two categories – passive

techniques and active techniques.  In this section, an overview of the current technology of

each type of solution is presented.  Once appropriate methods have been identified, the

performance of each can be evaluated, though a discussion of the performance evaluation

techniques is reserved for subsequent sections.

2.3.1  Passive Noise Control Techniques

Passive techniques for noise control can be based on mechanism of either reflection

or absorption.  A variety of noise control texts and handbooks explain the mechanism

governing passive noise control and its effective application.  A good introduction is

presented by Fader (1981).  The texts by Irwin and Graf (1979) and Bies and Hansen

(1996) are suitable for a more advanced understanding.  Practical information about

performance and implementation can by found in the handbook by Faulkner (1976).

A sealed tollbooth where the attendant communicates by means of a speaker

intercom system would alleviate many of the problems encountered.  The sealed booth

would block the transmission of sound by reflecting the sound away from the operator

location.  However, for reasons mentioned previously, this is not conducive to the business

of toll collections.
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Creating barriers close to the vehicle locations that reflect the engine and exhaust

noise away from the tollbooth location is another implementation of passive noise control.

The frequency and attenuation performance of the barrier, however, depends upon its size.

Traffic noise has significant low frequency components.  To adequately deal with the low

frequency sounds, the barrier would need to be large which entails considerable expense

and space.  In addition, a barrier may increase the sound level by creating a near reflection.

A sound absorption treatment may be applied to the surface of the barrier to control

reflections.  The frequency performance of the absorption material depends upon thickness.

As a general rule, a sound absorption treatment must have a thickness at least 1/4 of the

wavelength of the lowest frequency of interest.  To attenuate a 100 Hz tone, the material

should be nearly 1 meter thick.

Reasonable implementation of absorbing material on partial barriers and on the

exterior and interior of the tollbooths may reduce the effects of reflections and booth

resonance.  However, control of low frequency sound may be difficult to achieve and the

transmission of noise through the open communication window will still present a problem.

Various reflecting and absorbing configurations will be tested through toll plaza modeling,.

Of particular interest is treatment of the canopy with sound absorption material, placement

of sound absorbing partial barriers, and treatment of the exterior of the tollbooths with

sound absorbing material.

2.3.2  Active Noise Control Techniques

An alternative approach to control low frequency sounds is by means of active

techniques.  Many texts contain information on ANC.  A good introduction is given by

Snyder (2000).  Particularly clear and thorough discussions are presented by Nelson &

Elliot (1992, 1997).  The reduction achieved by ANC works on the principle of
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superposition.  When two identical waves, where one is shifted by a phase angle of 180

degrees from the other, are combined, the result is sound cancellation.  Expanding upon this,

an active noise system is used to create a sound with the same amplitude but opposite phase

of an undesirable sound.  When the two sounds are superimposed, the net result is a

reduction of the undesirable sound.

The single channel feedback approach is a promising ANC implementation for the

toll booth application.  This approach is relatively simple compared with other ANC

implementations, it is commercially available, and quite robust in performance.  In addition,

the feedback approach is particularly effective at attenuating low frequencies where the

passive techniques described in the previous section are usually weakest.

A single channel feedback ANC system consists of an error microphone, a

secondary source (loudspeaker), and a controller.  A diagram of the system is shown in

Figure 2.5.  The error microphone is positioned very close to and a fixed distance from the

secondary source.  Given this fixed distance, an electro/acoustical system transfer function

can be measured between the secondary source voltage input and the voltage output of the

microphone.  This measurable transfer function is represented in terms of Laplace

transforms as

€ 

C(s) =Vout(s) Vin (s) . (2.1)

Considering the entire system, the input to the error microphone is representative of a sound

field that contains a superposition of the primary source (the sound that is to be canceled)

and the secondary source.  The Laplace transform of the primary source signal measured at

the error microphone will be designated 

€ 

D(s).  The combined output of the microphone is

sent to a controller.  The output of the controller drives the secondary source.  The

measured transfer function of the controller in term of a Laplace transform will be

designated 

€ 

G(s).  The controller operates to minimize the sound pressure at the error
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microphone.  As depicted in the figure, the measured signal at the error microphone in terms

of Laplace transforms is

€ 

E(s) = D(s) + G(s) ∗C(s)∗ E(s) . (2.2)

which can be written as

€ 

E(s) = D(s)∗1 1− G(s) ∗C(s)[ ] . (2.3)

The signal at the error microphone will be a minimum when the denominator is a maximum.

Given a measured electro/acoustical system transfer function between the acoustical

transducers, 

€ 

C(s) , the greatest attenuation is gained by selecting a controller transfer

function 

€ 

G(s) that maximizes 

€ 

G(s) ∗C(s) .

Figure 2.5: Block diagram of the single channel feedback ANC system.  Representation
modeled after Nelson & Elliot (1992, p. 211).

In a physical sense, the controller operates by shifting the signal received at the error

microphone by 180 degrees, amplifying, and sending the inverted signal to the secondary

source and back to the error microphone.  For ideal transducers, specifically transducers

with a flat phase response, the system would have no time lag due to processing.  Therefore,

the high frequency limit of the ANC system would be determined by the delay due to the
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spacing between the error microphone and the secondary source.  At a wavelength equal to

twice the spacing, inverting and amplifying the signal will cause the gain at the error

microphone to be unbounded.  In application, systems have lag due to the finite speed of

signal transfer, transducer inertia, and controller computational time.  Therefore the first

instability occurs at a frequency lower than predicted for the ideal system.  In addition,

actual transducers exhibit phase shifts and manufacturing inconsistencies which further alter

the instability points.  To compensate for such instabilities, the controller must have a gain

less than one at the instability frequencies.  While a digital controller may be used to correct

for the transducer phase anomalies to gain attenuation over a greater frequency range, the

additional complexity currently requires too much computational time and increases delay.

For efficiency and simplicity, analog controllers are often designed to only pass frequencies

below the first instability.

The potential of ANC systems to reduce low frequency sounds within reverberant,

partially open enclosures has been demonstrated in previous studies by Waters (1988) and

Waters and Bernhard (1989).  The impact of such systems on speech intelligibility,

however, is not well understood.  Since low frequency sounds can mask speech signals,

single channel feedback ANC system embodiments, which generally display a strong low

frequency attenuation, may increase intelligibility.

The single channel ANC implementations of interest include:  multiple headset

configurations and an external configuration that can be mounted to the tollbooth.  The

acoustic volume of control is relatively small for ANC headsets since the acoustic pressure

is minimized in the immediate vicinity of the ear.  An exposed view of the ANC arrangement

used in a headset is shown in Figure 2.6.  The close positioning of the error microphone

and the secondary source in the headset configuration allows a broader band to be actively

attenuated.  Therefore, the performance for ANC headsets is indicative of the best achievable

reduction for any single channel feedback ANC solution.  While the external ANC system
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will have lower ANC attenuation due to physical limitations, it does not contain passive

components which may impede communication.  Furthermore, the external configuration

has none of the comfort concerns associated with headsets.  Investigation of ANC systems

will focus upon noise attenuation and speech intelligibility performance.

Figure 2.6:  Photo of error microphone and secondary source on an exposed ANC headset.

2.4  Modeling of the Toll Plaza

After inspection of the toll plaza and analysis of the survey results, the optimal

acoustical layout of the plaza was considered.  Modeling of the toll plaza was proposed to

investigate the sound field and explore the effects of noise control strategies.  Two

configurations were considered for the model:  1. a physical scale model and 2. a software
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based model.  The reduced scale physical model limited test configuration in terms of

materials and geometries.  A software model flexible enough to allow many configurations

was advantageous.

The standard commercially available acoustical software packages either utilize a

boundary element method (BEM), such as LMS SYSNOISE and Automated Analysis

Corporation COMET/Acoustics, or employ a beam tracing method such as LMS

RAYNOISE.  An addition option, FHWA's Traffic Noise Model (TNM) software package,

was specifically designed for traffic noise predictions.  TNM makes use of:  1. a simplified

geometric approach to model sound propagation and diffraction and 2. a database of look

up tables for sources.  BEM packages can model sound radiation from structural surfaces

as well as propagation through air.  The beam tracing method can model sound propagation

through air but cannot model sound radiation from structures.  However, BEM programs

entail a high level of complexity.  In contract of a beam tracing technique, BEM programs

require additional time necessary to construct the model, additional computational time, and

the results would be at a level of complexity making it more difficult to ascertain the

fundamental concepts at work.  At the other level of approximation, the FHWA Traffic

Noise Model is too simplistic and not flexible enough to model toll plaza noise control

strategies.  For this analysis, the beam tracing method used within LMS RAYNOISE is a

good technique to evaluate the acoustics of the toll plaza.  It contains the correct level of

approximation to efficiently and accurately model the toll plaza.  In addition, RAYNOISE is

flexible enough to test the noise control strategies.

2.4.1  The LMS RAYNOISE Software Package Theory

Three numerical methods for steady state acoustical modeling of non-curved

geometries are presented.  The first two are common techniques.  The third method is a
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hybrid of the previous two techniques and is the one implemented within LMS

RAYNOISE.  None of these techniques account for diffraction in their original formulation.

The implementation of diffraction edges is handled separately in LMS RAYNOISE and is

discussed at the end of this section.  For more information concerning the different

numerical methods, refer to the RAYNOISE user's manual (LMS Numerical Technologies,

1998).

2.4.1.1  Mirror Image Source Method

The mirror image source method is a simple and accurate way to model sound

source and barrier interactions.  In Figure 2.7, a basic mirror image source method

implementation is depicted.  The mirror image source method treats a geometric bound as a

mirror.  An image source is positioned opposite of the source location as reflected by the

boundary.  The image source is used to account for sound reflection resulting from the

boundary.  Once the image source is located, the boundary is removed.  A perfectly

reflecting boundary is modeled by assigning the source and the image source the same

amplitude and phase characteristics.  Assigning a lower strength and a lagging phase to the

image source models a loss of energy and a boundary with a complex impedance.

The mirror image source method can be extrapolated to multiple sources, multiple

boundaries, and multiple orders of sound reflection.  The major disadvantage of this

technique is the high level of computation necessary to correctly locate all of the image

sources and assign the correct characteristics to each image source.  Due to the nature of the

calculation, the computational time increases exponentially with reflection order (LMS

Numerical Technologies, 1998, chap. 3.1).  In addition, this technique does not model the

nearfield of the source.  For further information about the method of image sources, refer to

Kuttruff (1997).
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Figure 2.7: A single source and two geometric boundaries as modeled by a Mirror
Image Source Method implementation.  Open circle is the true source;
closed circles are the image sources.

2.4.1.2  Ray Tracing Method

The ray acoustics method, also known as the geometrical acoustic method, models

sound wave propagation as rays much like light waves behaves in optics.  For the reader

interested in the mathematical development of ray tracing, the text by Ziomek (1985) is a

good place to start.  Advanced and though discussions can be found by Lunenburg (1964)

and Born (1964).

The ray tracing method is a more computationally efficient model of sound

propagation than the mirror image source method.  Necessary for a ray tracing model is the

specification of a source, a receiver volume, and the any geometric boundaries.  Reflection,

transmission, and absorption characteristics describe the boundary.  Radiation and strength

characteristics are specified for the source.  In the ray tracing method, the source energy is

divided into a discrete number of rays with energy assigned to the rays in a manner

consistent with the radiation directionality of the source.  The rays travel outward from the

source at the speed of sound; the ray strength is attenuated with distance due to spherical

divergence and absorption of the medium.  Upon contact with a boundary, part of the
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energy is absorbed, part of the energy is transmitted, and part of the energy is reflected in

accordance with the properties assigned to the boundary.  The transmitted ray has the same

orientation as the original (unless the refraction of the boundary is specified) while the law

of specular reflection indicates the direction of the reflected ray.  The energy of reflected

and transmitted rays are calculated from the assigned boundary characteristics.  When the

energy of the ray falls below a certain threshold, the ray is abandoned.  Each ray is checked

to see whether it crosses a receiver volume.  Rays crossing the receiver volume give a

measure of sound pressure level.

The major advantage of this technique is that computation time only increases

linearly with reflection order (LMS Numerical Technologies, 1998, chap. 3.1).  However,

certain limitations are associated with this technique.  The ray nature of sound waves and

therefore the ray tracing method is only a good approximation for high frequencies.  For

accurate coherent source modeling, distance between the source and the receiver (which is

also known as the characteristic length) should be less that the wavelength of sound emitted

by the source, (Weston, 1997) and (Felsen, 1997).

2.4.1.3  Beam Tracing Method

The beam method is quite similar to the ray tracing method.  As in the ray tracing

method, the source emits a finite number of rays.  In the beam tracing method, though, a ray

describes the center axis of a beam of radiation.  The beams touch each other and form a

complete surface.  The direction of beam propagation is determined by a ray tracing

algorithm for the axis of the beam.  The beams increase in cross-sectional area according to

spherical divergence.  When the beam crosses a receiver point, the location of the crossing

is used to calculate the position of an image source.  Accounting for losses due to medium
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attenuation, surface attenuation, and spherical divergence, the strength of this image source

is calculated.

In essence, the beam tracing function is used as an efficient way to identify the

position and strength of image sources.  The image sources are used to calculate sound

pressure level at the receiver points.  The computational efficiency of the ray tracing method

is combined with the accuracy of the mirror image source method which makes this a good

choice for the toll plaza simulation problem.  Even though this method is more accurate than

the ray tracing method, limitations exist with this approach.  The beam tracing method is

most accurate when the wavelength is less than the characteristic distance.  However, this

limitation involves coherent source modeling.  Since vehicle noise has a random

characteristic when averaged over an extended length of time, the phase angle of sound

pressure may be not important.  Therefore, for this research, the incoherent source model is

more appropriate than the coherent source model.  By neglecting the phase angle of sound

pressure, the energy is calculated without interference patterns.  An additional limitation of

the beam tracing method, a phenomena known as cone narrowing, can occurs when the

beam intersects an interior corner boundary and the ray axis only accounts for one surface

interface (LMS Numerical Technologies, 1998, chap. 3.1).  The manual describes methods

to statistically account for cone narrowing (LMS Numerical Technologies, 1998, chap. 3.1).

However, the toll plaza model will contain exterior geometries which should limit the effects

of cone narrowing.

2.4.1.4  LMS RAYNOISE Diffraction Technique

Diffraction involves the bending of sound waves passing over an obstacle.  The

Kurze-Anderson method used in RAYNOISE is a first order approximation utilizing the

single shortest path between the source and the receiver diffracting over a barrier edge
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(LMS Numerical Technologies, 1998, chap. 3.3).  In this way, a diffraction edge is

characterized by a discrete point of diffraction along the edge.  The attenuation due to the

barrier is then the difference between the diffracted path length and the shortest path length

without the barrier present.  To model edge effects at the toll plaza, the diffraction technique

used in RAYNOISE was deemed to be sufficient.

Figure 2.8: Diagram showing discrete diffraction paths over the top edge of a barrier.
Open circle is the source; shaded circle is the receiver.

2.5  Speech Intelligibility

Speech intelligibility involves the ability to understand speech communication in a

particular environment or through a particular system.  Calculation of speech intelligibility

from physical parameters is the primary area interest for this research.  The speech

intelligibility of possible noise control solutions such as ANC headsets may be objectively

measured through the use of a suitable method.
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2.5.1  Standard Intelligibility Calculation Methods

In this section, standard methods to calculate the intelligibility, articulation, or

interference of speech will be summarized.  The most suitable method for calculating the

effects of the ANC systems on speech intelligibility will be identified.  A brief overview of

the methods may be found in Crocker (1997b) and Tocci (1997).  The interested reader is

referred to the compilation of papers reviewed by Hawley (1977) which contains a

comprehensive citation of the historically prominent works in the field of speech

intelligibility.

The Speech Interference Level (SIL), as specified by ANSI S3.14-1977, is a simple

metric that estimates the degree to which a particular noise interferes with communication

(American National Standards Institute, 1977).  Given a distance between a talker and a

listener and the SIL due to the background noise, the vocal effort for reliable communication

can be predicted.  The sound pressure level for noise in the four octave bands with center

frequencies between 500 Hz to 4000 Hz are used for calculating the SIL.  The metric is

obtained by averaging the four octave bands on an energy basis and expressing the result as

a sound pressure level.

The Articulation Index (AI), as specified by ANSI S3.5-1969, utilizes a weighted

average signal to noise ratio (American National Standards Institute, 1969).  While the AI

metric is historically rich and has been a popular standard for quite some time, it has been

replaced by the Speech Intelligibility Index (SII) which will be discussed in a following

paragraph.

The Speech Transmission Index (STI) was proposed by Houtgast and Steeneken

(1984) as a metric to account for speech distortion due to enclosure reverberation.

Fundamental to the metric is the calculation of a modulated transfer function which indicates
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the degree of distortion due to reverberation.  The reverberant noise and the interfering noise

are combined to develop an apparent noise level.  Beyond the introduction of reverberant

noise, many of the calculation procedures follow earlier versions of the AI using a signal to

noise ratio technique.

The Speech Intelligibility Index (SII) is the most recently developed of the methods

described and was standardized in ANSI S3.5-1997 (American National Standards Institute,

1998).  Simply, the SII is a weighted average of the signal to noise ratio taking into account

overloading and masking effects.  The SII is specified for use with octave band, one third

octave band, or critical band data.  The minimum data necessary includes the following:  the

noise spectrum per specified calculation band, the listener's hearing threshold per specified

calculation band, and the vocal effort of the talker.  In addition, the SII can be used to

account for a system transfer function between the talker and listener, the type of speech

information, and the type of noise such as reverberant distortion.

For the purposes of evaluating the speech intelligibility of single channel feedback

ANC systems, the SII is a good choice.  The SII is appropriately sophisticated to achieve

results highly correlated to actual communication situations.  Since single channel feedback

ANC systems are non-adaptive, the attenuation is linear.  As long as an ANC system

behaves linearly in the tested frequency bands, the effects of the ANC system can be

accounted for simply from its transfer function.  As well as speech intelligibility

performance, the physical attenuation of each device for noise reduction purposes is also of

interest.  The system transfer functions may used to evaluate the noise attenuation

performance of the ANC systems.

2.6  Summary
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Survey results indicate that noise at the toll plaza creates an unpleasant work

environment and hinders communication.  Reasonable passive noise control strategies will

be modeled using a beam tracing method.  To address improvements in speech intelligibility

along with additional noise reduction, ANC systems will be explored.  Various ANC

headsets and a prototype ANC system designed to be mounted to the tollbooth and create a

local region of attenuation will be evaluated.  For the purposes of evaluating the speech

intelligibility of the ANC systems, the SII as set forth by ANSI S3.5-1997 will be used.

The system transfer functions will used to evaluate the noise attenuation performance of the

ANC systems.
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3.  MODELING OF THE TOLL PLAZA

In this chapter, the application of the LMS RAYNOISE software package to model

the acoustics of the Portage Barrier Toll Plaza will be described.

3.1  Introduction

Appropriate and feasible noise control solutions can be best identified from a good

understanding of the sound field and nature of the sound transmission paths.  A computer

model of the physical features of the toll plaza is one possible approach to gain this

understanding.  Computer models also allow the performance of potential noise control

solutions to be assessed.  A beam tracing method was employed, using LMS RAYNOISE.

This method was deemed appropriate and efficient for this study.

LMS RAYNOISE is well suited for the evaluation of noise control strategies that

involve architectural changes.  Strategies that will be discussed in Chapter 4 include the

treatment of the existing overhead canopy with sound absorbing materials, the

implementation of partial barriers with absorbing surface treatments, and the application of

sound absorbing material to tollbooth surfaces.  In this chapter, the fundamental elements of

the computer model are described.  The justification for key assumptions and for the

selection of different adjustable parameters is discussed.



25

3.2  Verification

Before proceeding with the analysis of a toll plaza, two simple models were

constructed to test the accuracy of the beam tracing technique employed within

RAYNOISE.  The models were compared with known analytic solutions.

3.2.1  Verification Case 1

Ray acoustic models may be inaccurate for low frequency sources where the ray

approximation breaks down or for models with small characteristic distances – the distance

from the source to the first reflecting surface or to the receiver (Crocker, 1997a and Weston,

1997).  The first verification model was constructed to investigate these limitations.

Following standard modeling procedures, a 100 meters by 100 meters single element mesh

(plane) was created within AutoCAD.  The plane was imported into RAYNOISE.  A 100 Hz

coherent source was placed in the center of, and one meter above the plane.  A receiver mesh

with dimensions 98 meters by 100 meters centered one meter above the source was created.

The sound pressure at node points of the receiver mesh was calculated in RAYNOISE.  A

diagram of the model is included in Figure 3.1.

Code was written to obtain an analytical solution for the same configuration.  The

theory and the analytic model are discussed by Kinsler and Frey (1982).  An infinite

reflecting plane was modeled using one mirror image source.  The primary source and the

image source were identical monopoles.  The sound field was calculated at the same

locations as those of the mesh points in the beam tracing model.  The RAYNOISE sound

pressure level data was imported into MATLAB and compared with the analytical solution

as displayed in Figure 3.2.  There is an excellent agreement between the beam tracing

predictions and the analytic solution.  Close to the source, there is a small discrepancy of

0.02 dB between the sound pressure levels which diminished as the characteristic distance
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increased.  Low frequencies and small characteristic distances were not problematic for the

beam tracing case considered in this study.  The accuracy of the predictions for this case

was adequate to simulate noise conditions at the toll plaza.

Figure 3.1: Case for a simple source over a perfectly reflecting plane.  Schematic of the
mesh and the receiver plane.  The source was located at the coordinates (50,
50, 0.5) in meters, and the receiver plane was located at the Y-axis position of
50 meters.
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Figure 3.2: Comparison between the beam tracing predictions and the analytical solution
for a simple source over a perfectly reflecting plane.  The difference in
sound pressure level in dB over the receiver plane is displayed.

3.2.2  Verification Case 2

Since a realistic model of a toll plaza involves diffraction of sound around the

tollbooths, a second case was designed to investigate the edge diffraction technique used

within RAYNOISE.  Following standard modeling procedures, AutoCAD was used to

create a plane of dimensions 200 meters by 200 meters with a barrier attached to and

positioned in the center of the plane.  The barrier width was 10 meters, and its height was 3

meters.  The AutoCAD generated surfaces were imported into RAYNOISE.  A point source

was positioned in the center and perpendicular to the axis of the barrier, 0.5 meters above

the ground plane and 7.5 meters in front of the barrier.  An ideal receiver was positioned in
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the center and perpendicular to the axis of the barrier, 3 meters above the ground plane and

30 meters behind the barrier.  The top and both side edges of the barrier were specified as

diffraction edges, which means that the sound pressure in the shadow region of the obstacle

was calculated along these edges.  The analysis was performed for one-third octave bands

center frequencies from 20 Hz to 20,000 Hz.  Figure 3.3 includes a diagram of the model

for this verification case.

An approximate analytical solution for the same test situation was obtained based on

Lam's method using Kurze and Anderson's equations as presented by Muradali and Fyfe

(1997).  Lam's method accounts for phase interactions, which is consistent with the coherent

source approach used within RAYNOISE.  The method assumed an infinite reflecting plane

modeled using mirror image sources.  All other parameters were the same as for the ray

tracing simulation.

A comparison between the ray tracing model predictions and the analytical result is

displayed in Figure 3.4.  There is a good agreement between the RAYNOISE results and

the analytic solution over the frequency range between 125 Hz to 1600 Hz.  There are

discrepancies at higher frequencies.  The discrepancy are curious since both methods

approximate a diffraction edge using the single shortest diffraction path from point source

to point receiver.  The accuracy of the model was again was deemed satisfactory.

Figure 3.3: Diffraction by a planar rigid barrier over a reflecting plane.  Schematic of the
problem geometry, side view.  The source is located at coordinates (0, -7.5,
0.5).  The barrier is located at Y=0.  The receiver is located at coordinates (0,
30, 3).  All positions are in units of meters.
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Figure 3.4: Comparison between results obtained using a beam tracing simulation and
the K & A equation from Muradali and Fyfe (1997).  The solid line
represents data obtained using Lam's method and the dashed line represents
data obtained using RAYNOISE.

3.3  Model Strategy and Assumptions

3.3.1  Model Design

Blueprints for the Portage Barrier Toll Collection facility were studied before

construction of the software model.  The key elements of the plaza are the ground, the

tollbooths, the overhead canopy, and the supports for the canopy.  The canopy supports

were omitted from the model for simplicity.  Diffraction about the diameter would cause the
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presence of the supports to be acoustically negligible.  Figure 3.5 shows the baseline toll

plaza model constructed using AutoCAD.

To prevent interior interactions from obscuring the analysis, the booths walls were

assumed to be solid, without communication window openings.  The ground, the tollbooths,

and the overhead canopy were created as single element meshed surfaces within AutoCAD.

Figure 3.5:  Baseline toll plaza model constructed in AutoCAD.

3.3.2  Material Properties

The acoustical properties of the construction materials for the key elements of the

toll plaza were considered in the analysis.  The exterior of the booths is comprised of
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aluminum and stainless steel.  Corrugated metal sheets form the overhead canopy.  The toll

plaza vehicular roadway is surfaced in concrete.

The Sabine absorption coefficient, the diffusion coefficient, and the sound

transmission loss specified over octave band center frequencies ranging from 63 Hz to 8000

Hz characterize different material properties.  Material properties can be defined using a

material database built into RAYNOISE, or by entering user-defined values.  By stipulating

both the absorption and the transmission coefficients of a surface, the reflection coefficient

is defined.  Diffusion characterizes the randomness of reflections in a non-specular way

resulting from surface corrugations and roughness.  The effects of surface diffusion were

neglected, thus the diffusion coefficients for all materials were zero.

The acoustical properties of the two materials used are shown in Table 3.1.  The

values for the ground was assigned based on typical Sabine absorption of concrete and a

transmission loss of concrete unfinished, 150 mm thick.  To model the remaining metallic

objects of the plaza, a Sabine absorption of zero and a transmission loss of sheet metal steel,

0.7 mm thick were used.  The material properties defined were deemed appropriate.
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Concrete
Octave Band
Center
Frequency
(Hz)

63 125 250 500 1000 2000 4000 8000

Sabine
Absorption

0.03 0.04 0.05 0.06 0.06 0.07 0.09 0.00

Transmission
Loss

0 35 40 49 55 60 65 0

Metal
Octave Band
Center
Frequency
(Hz)

63 125 250 500 1000 2000 4000 8000

Sabine
Absorption

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Transmission
Loss

0 9 14 20 26 30 37 0

Table 3.1:  Material properties used to model elements of the Portage Barrier Toll Plaza.

3.3.3  Diffraction Edges

All of the vertical edges and all of the ceiling edges of the tollbooths were selected as

diffraction edges.  Diffraction around the toll booths causes sound waves to penetrate

shadow zones that could not be reached by specular reflection.  Since the canopy is not

along the path between the sources and the receivers, diffraction of sound around the

canopy edges does not contribute to the sound field.  The remaining edges, the ground

edges of the tollbooths, obviously cannot contribute to diffraction.

3.3.4  Ambient Conditions

The air medium was assumed to be homogeneous and at rest, at the mean

temperature of 20 degree Celsius with a 50 percent relative humidity.  Hence the speed of
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sound was 343.325 meters per second.  The possible effects of temperature gradients and

wind were not taken into account.

3.3.5  Source Spectrum

All sources were ideal spherical point sources, which are also called monopoles.

The sound power level spectrum, position, and radiation pattern of the spherical point

sources were specified.  More complicated source patterns were built through the use of

multiple point sources.

Semi-trucks may cause the highest noise levels.  Semi-trucks have two distinct

sound characteristics – idling and acceleration, each with a different level and frequency

spectrum.  To model the source characteristics of the semi-trucks, the procedures utilized in

another prediction software package, FHWA Traffic Noise Model (TNM), were used (U. S.

Department of Transportation, 1998).  In TNM, heavy trucks are modeled using a pair of

monopole sources.  One source is located at the ground level and the other source is located

3.66 meters (12 ft) directly above the first.  The A-weighted sound pressure level in one

third octave bands for each monopole is specified at a distance of 15 meters from the

source.

To model an idling semi-truck, TMN data for heavy trucks on average pavement

traveling at 16.09 kph (10 mph) under cruise throttle was used.  To model an accelerating

semi-truck, TMN data for heavy trucks at 32.19 kph (20 mph) under full throttle were used.

As input to the RAYNOISE model, TNM one third octave band sound pressure level data

was converted to octave band sound power level data.  The source values used are presented

in Table 3.2.

The locations of the semi-truck sound sources are shown in Figure 3.6.  In the

center of each lane three semi-truck idle sources and one acceleration source were

constructed.  The first idling semi-truck was positioned central to the large toll booths and
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just off center of the small tollbooths.  The remaining two idling semi-trucks were placed

3.05 meters (10 ft) fore and aft of the center idling semi-truck.  The accelerating semi-truck

was placed 6.10 meters (20 ft) aft the last idling semi-truck, consistent with normal traffic

flow.

Each semi-truck source was modeled with an incoherent source pair similar to that

used in TNM.  The bottom source was assigned a uniform monopole radiation

characteristic, an octave band power level spectrum, and source height of 0.15 meters (0.5 ft)

above the ground.  A height of 0.15 meters was used instead of the TMN prescribed height

of 0 meters, to prevent anomalous transmissions through the ground of the model.  The top

source was assigned a uniform monopole radiation characteristic, an octave band power

level spectrum, and source height of 4.57 meters (15 ft) above the ground as prescribed in

TNM.

Octave Band
Center
Frequency
(Hz)

63 125 250 500 1000 2000 4000 8000

Idle Low
Source (dB)

74.5714 81.9378 85.1124 86.7804 88.7490 88.0464 86.4313 81.0199

Idle High
Source (dB)

76.1521 83.5185 86.6931 88.3611 87.7603 85.5476 83.9325 78.5211

Acceleration
Low Source
(dB)

77.8139 86.3631 89.6019 92.6019 95.6703 94.2228 90.1610 83.2050

Acceleration
High Source
(dB)

79.2157 87.7649 91.0037 94.0037 94.8572 92.2801 88.2184 81.2623

Table 3.2:  The semi-truck source spectrum, sound power level.
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Figure 3.6: Location of semi-truck sound sources within the basic model of the toll
plaza, top view.
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3.3.6  Receiver Locations

Receiver locations (microphone positions) must be specified.  More complicated

receiver geometries are constructed by meshing a surface where the nodal locations created

by the meshing process define the location of point receivers.

At the toll plaza, the receivers of interest are tollbooth attendants’ ears.  To model the

noise experienced by the tollbooth attendants, receiver planes were defined at the locations

of the tollbooth open communication windows.  To prevent anomalous transmissions

through tollbooth walls, the receiver point mesh was placed 0.15 meters (0.5 ft) in front of

the tollbooth surface.  Figure 3.7 shows a diagram of the receiver plane locations.  The

number of nodal points affects the level of resolution and the computational time.  As a

compromise between efficiency and accuracy, a four point mesh for each receiver field was

used.  Four receiver points, one in each corner, were positioned at the window location.
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Figure 3.7:  Location of receiver points within the baseline model of the toll plaza.

3.3.7  Calculation Procedures

There are two phases of RAYNOISE calculation.  The first phase is more

computationally intensive and involves mapping the beam paths.  The second phase involves

postprocessing the results into meaningful acoustic parameter.  The first step in the analysis

is to select the sources and the frequencies of interest.  Then calculation parameters need to

be defined.  The calculation parameters are divided into the following four classes:

propagation, echogram, histogram, and general.  Information about the calculation

parameters can be found in the RAYNOISE Users Manual (LMS Numerical Technologies,

1998, chap. 9.5).  Only the propagation and general subsets are important to the type of

analysis used.  The default propagation settings were used:  2000 rays, 10th order reflection,
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2000 ms time window, and 90 dB dynamic range.  The number of rays defines the number

of beams used to model each source.  The reflection order defines the number of beam

reflections tracked in the analysis.  The duration of the time window is the period in which

echoes are calculated for an echogram study.  The dynamic range specifies the level at

which a beam is abandoned.  In a convergence study, the number of rays was increased to

200,000 from the above value to investigate the accuracy of the predictions.  For the test

case, there was no discernable difference.  The selected general settings consisted of the

settings:  no diffusion calculation, diffraction calculation, no tail compensation, and the

triangular beam method.  The diffusion and diffraction settings are consistent with

previously defined material properties.  Tail correction has no physical meaning in a exterior

model such as this, and should not be used as explained in the RAYNOISE User's Manual

(LMS Numerical Technologies, 1998, chap. 3.1.6).  The triangular beam method was

selected over the conical beam method, due to the higher accuracy of the triangular beam

method as explained in the RAYNOISE User's Manual Section (LMS Numerical

Technologies, 1998, chap. 3.1.4).

As a final step, RAYNOISE environmental variables were investigated, to uncover

pertinent parameters that are not available in the standard calculation menus (LMS

Numerical Technologies, 1998, chap. 11.8).  During this investigation, the

HIGHACCURCY parameter was chosen to increase the accuracy of the model results.

This additional test is used to avoid contributions of false image sources (LMS Numerical

Technologies, 1998, chap. 3.1.5 and 11.8.3.34).

3.3.8  Data Analysis

To better utilize the RAYNOISE generated data, the results were exported into a free

format text file.  A MATLAB function was constructed to read the free format text file and
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convert the data into a matrix.  Once the data is in a matrix form it can be manipulated to

thoroughly investigate the noise conditions at the plaza.

3.4.  Summary

Two validation cases demonstrated that the RAYNOISE has an adequate level of

accuracy to simulate the noise conditions at the toll plaza.  Based upon analysis of the

blueprints, physical elements such as the ground, tollbooths and overhead canopy were

modeled.  Semi-truck sources and receivers at the communication window location were

defined.  Detailed parameters affecting the type of calculation were reviewed.

The ground work for RAYNOISE modeling has been well established in this

chapter.  The next chapter reports on the results of various RAYNOISE case studies.  In

these case studies, the effects of architectural changes such as:  the treatment of existing

overhead canopy with sound absorbing material, the implementation of partial barriers with

absorbing surface treatments, and the placement of sound absorbing material on the walls of

the tollbooths will be explored.
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4.  DESIGN STUDY

4.1  Introduction

RAYNOISE is well suited for evaluation of noise control strategies that involve

architectural changes.  Reasonable implementations of passive noise control solutions for

the toll booth application discussed in Chapter 2 include sound absorbing treatment of the

existing overhead canopy, treatment of the tollbooth walls with sound absorbing material,

and implementation of partial barriers with absorbing surface treatments.  Modeling of these

passive noise control solutions are discussed in this chapter.

4.2  Model Configurations

Five toll plaza models were created to test the performance of reasonable passive

noise control approaches.  The location and properties of the ground, sources, and receivers

remained constant for all of the models as described in Chapter 3.  The noise control

strategy was the only change from model to model

4.2.1  Reference Model

A model of the existing toll plaza was created as described in Chapter 3.  The model

is shown in Figure 4.1.  In this model the ground, the tollbooths, and the overhead canopy
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were included.  This model was constructed as the reference against which the performance

of all alterations would be assessed.

Figure 4.1:  Model of the Portage Barrier Toll Plaza used as the reference condition.

4.2.2  Absorbing Canopy

The canopy lies above both the sources and the receivers at the toll plaza.  The

canopy may increase the sound level at the receiver location by creating additional, overhead

reflections.  To model a canopy with perfect sound absorbing treatment, the canopy was

removed from the model.  A diagram of the model is shown in Figure 4.2.  This model

represents the best achievable performance obtainable with surface treatments.
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Figure 4.2: Toll plaza model with the canopy removed to simulate a perfectly absorbing
canopy.

4.2.3  Absorbing Partial Barriers

Reflecting barriers could be used to isolate sound sources in one lane of traffic from

the other lanes.  Application of absorbing treatment on the barriers is used to reduce the

energy of reflections off of the barriers.

The test configuration included two dimensional barriers measuring 1.37 meters

(4.5') long by 1.21 meters (4') tall set 0.15 meters (0.5') away from the east side of the

tollbooths.  Barriers measuring 1.37 meters (4.5') long by 1.21 meters (4') tall were placed

0.15 meters (0.5') away from the west side of the larger booths.  Barriers measuring 2.90

meter (9.5') by 1.21 meters (4') tall were placed 0.15 meters (0.5') away from the west side
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of the small booths.  The barriers were centered about the booths and parallel to the lanes of

traffic.  A diagram of the model is shown in Figure 4.3.  Often toll employees must cross

lanes of traffic.  In such conditions, a clear view of the traffic lanes is necessary for safety.

The height of the barrier was selected to avoid obstructing the view of traffic.  The length of

the barriers was selected to conform to the existing canopy supports.

The material properties of the barriers were assigned using the RAYNOISE material

database.  A listing of the material properties is shown in Table 4.1.  To model a concrete

partial barrier with sound absorbing surface treatment, the Sabine absorption of mineral

wool, 0.05 meters thick and the transmission loss of concrete unfinished, 0.15 meters thick

were used.  These material properties are typical of the actual conditions of a high quality

implementation.  The top and side edges of the barriers were designated diffraction edges to

model sound diffraction due to the barriers.
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Figure 4.3:  Toll plaza model with sound absorbing partial barriers.

Octave Band
Center
Frequency
(Hz)

63 125 250 500 1000 2000 4000 8000

Sabine
Absorption

0.40 0.39 0.45 0.56 0.59 0.61 0.55 0.50

Transmission
Loss

0 35 40 49 55 60 65 0

Table 4.1: Table of the material characteristics assigned for the partial barriers with
sound absorbing treatment.
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4.2.4  Absorbing Treatment for the Tollbooths

To further explore passive noise control solutions, treatment of the tollbooth

surfaces with sound absorbing material was evaluated.  Since tollbooths are parallel to one

another sound may reflect between adjacent booth walls.  Similarly, semi-truck trailers have

reflective surfaces that are parallel to the tollbooth faces.  By treating the tollbooth surface

with sound absorbing material, some of this reflected energy is absorbed.

The material property for the absorbing tollbooth surfaces was assigned using the

RAYNSOISE material database.  The material property is shown in Table 4.2.  To model a

metal tollbooth with sound absorbing surface treatment, a Sabine absorption of mineral

wool, 0.05 meters thick and a transmission loss of sheet metal steel, 0.7 mm thick were

used.  This material property is typical possible for a realistic application condition.  The

material property was assigned to all faces of each tollbooth.

Octave Band
Center
Frequency

63 125 250 500 1000 2000 4000 8000

Sabine
Absorption

0.40 0.39 0.45 0.56 0.59 0.61 0.55 0.50

Transmission
Loss

0 9 14 20 26 30 37 0

Table 4.2:  Material characteristics assigned for sound absorbing tollbooth walls.

4.2.5  Combined Modifications

The performance of the individual passive control approaches is not necessarily

additive.  Since the application of sound absorbing material in one location may prevent

energy from reaching another location, the combined noise control approaches was tested as

a separate case.  To test the combined effects of a perfectly absorbing canopy, absorbing
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partial barriers, and absorbing tollbooth surfaces, a final design model was created.  The

model is shown in Figure 4.4.

Figure 4.4: Toll plaza model with perfectly absorbing canopy, sound absorbing partial
barriers, and absorbing treatment on the tollbooth walls.

4.3  Results and Analysis

As described in Chapter 3, the RAYNOISE models are processed for one active

source pair at a time and the results are exported to a file.  Processing each model in

RAYNOISE involved computing the response of 48 source pairs for 9 octave band center

frequencies at 15 receiver planes each with 4 data points.  Therefore the amount of data
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generated per case is quite extensive.  The files are imported into MATLAB where the data

can be more readily reduced, analyzed, and compared.

In preliminary tests, it was demonstrated that the variation of sound pressure level

across each receiver plane (tollbooth operator window location) was small.  To arrive at a

single representative sound pressure level for each window location, the energy of the four

data points for each window location was averaged using MATLAB.

The insertion loss for a noise control technique was calculated by subtracting the

level of the modified model from the level of the reference model for each corresponding

case.  By this method, the reduction of noise at the plaza due to each passive technique can

be assessed.

4.3.1  Frequency Dependence

The first stage of analysis involved evaluation of the insertion loss performance as a

function of frequency.  Since the RAYNOISE analysis was performed using a single source

pair at a time, multiple vehicles can be simulated by summing the corresponding power

associated with each vehicle source case.  As a starting point for this analysis, all the vehicle

sources were activated.  This condition is used to model full traffic which is the worst noise

condition at the toll plaza.  The sound pressure level and the insertion loss at each of the

window locations was analyzed as a function of frequency.  Representative cases are shown

in Figures 4.5 and 4.6.  Other results are collected in the Appendix.

Throughout all 15 window locations, there was a high degree of uniformity with

respect to the insertion loss results.  The insertion loss did not vary more than 1 dB across

all nine octave bands for each window location.  Furthermore the slight variation for all

window locations followed a consistent pattern.
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One decibel is considered the minimum difference in sound pressure level that can

be detected by human subjects.  Since the frequency dependence was at most 1 dB at each

window location and often below that, the slight insertion loss variation with respect to

frequency is insignificant.  Thus, the overall sound pressure level was used in further model

analysis.  The overall sound pressure level is calculated by summing the power of the octave

frequency band predictions.  Use of the overall sound pressure level results in a single,

frequency independent value which reduces the number of model parameters and makes

comparison of the results more straightforward.

While this test was performed to explore frequency dependence of insertion loss,

information about the performance of the noise control techniques can be gained.  The

partial barriers appeared to have no perceivable effect.  All of the predicted insertion loss

data were a fraction a dB.  The perfectly absorbing sound treatment on the canopy often

yielded less than 1 dB of insertion loss with a maximum of 1.5 dB for select frequency

bands.  Treatment of the booths produced an insertion loss which ranged from a fraction of

a dB to a maximum of 2 dB.  The combined noise control solutions resulted in an insertion

loss that ranged between 1 to 3.5 dB.  A more in depth analysis will follow with subsequent

studies.
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Figure 4.5: Sound pressure level of all sources active as a function of frequency at the
fourth window location to the north of the plaza.  ∇ level of existing toll
plaza; * level with absorbing canopy; O level with absorbing barriers; ÿ  level
with absorbing barriers; + level with all modifications.



50

Figure 4.6: Insertion loss of all sources active as a function of frequency at the fourth
window location to the North of the plaza.  * insertion loss of absorbing
canopy; O insertion loss of absorbing barriers; ÿ  insertion loss of absorbing
barriers; + insertion loss of all modifications.

4.3.2  Investigating Individual Sources

In the prior section, all sources were activated as a starting point in the investigation

of noise control solutions.  Beginning to delving into the details of noise control

performance, individual sources were activated and the overall level and insertion loss was

analyzed as a function of window position for each of the 48 source pairs.  Representative

cases are shown in Figures 4.7 and 4.8.  The results for the remaining source pair cases can

be found in the Appendix.



51

For the idle sources, which are close to the tollbooth location, the level was to least 5

dB and often 10 dB higher for windows in the lane where the source is located than for

windows in other lanes.  For the acceleration sources, which are farther from the tollbooth

location, the level was around 3 to 5 dB higher for windows in the lane where the source is

located than for windows in the adjacent lanes.  The idle sources are relatively much closer

to the windows in the immediate lane than to any other window location.  Since the

acceleration sources are not significantly closer to the windows in the active lane than to the

windows in the adjacent lanes, the level difference is not as dramatic.

The results imply that distance of the source to the receiver is an important factor in

the sound pressure level at the receiver location.  Under normal plaza conditions, where each

lane is serving at least one vehicle, the sound field at the window locations appears to be

dominated by the sound source in the lane being served.  This implies that the sources in

one lane often have little effect upon the level in another lane.  To adequately deal with noise

due to normal traffic conditions, the solution has to address noise control in the active lane.

The analysis discussed in this chapter used semi-truck sources which are the most

extreme noise source at the toll plaza and of greatest interest.  In reality, patrons of the toll

roads often use passenger vehicles.  Since the level of passenger vehicles is in general much

lower than that of semi-trucks, the direct field may be less important in certain

circumstances where passenger vehicles coexist with semi-trucks.  If the immediate lane

serves a passenger vehicle and the adjacent lane serves a semi-truck, the sound field in the

immediate lane may have a significant contribution from the energy of the semi-truck.  This

energy would propagate to the immediate lane through reflection.  Therefore absorbing

material may be more significant in this situation since the sound field has a greater

importance on reflected energy.

The mixed source scenario can be assessed with the test data of this section.

Examining the insertion loss at receiver locations adjacent to the lane with the active source
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pair would be an idealized simulation of a semi-truck and a passenger vehicle in side by side

lanes.  The partial barriers appeared to have an insertion loss than ranged from –2.5 dB to 2

dB in the adjacent lanes.  The perfectly absorbing sound treatment on the canopy yielded 0

dB to 4.5 dB of insertion loss in the adjacent lanes.  Treatment of the booths produced an

insertion loss which ranged between 0 dB to 2.5 dB for the adjacent lanes.  The combined

noise control solutions resulted in an insertion loss that ranged between –2 dB to 7 dB in

the adjacent lanes.

Furthermore, in such a situation were the immediate lane serves a passenger vehicle,

the noise level is much lower than when the immediate lane serves a semi-truck.  Due to the

lower level, this situation does not exhibit the primary concerns of this research study such

as fatigue, hearing damage, and low speech intelligibility.
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Figure 4.7: Overall sound pressure level for an individual source pair as a function of
window location.  Active source pair is the middle idle semi-truck located in
fourth lane from the north.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level is all modifications.
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Figure 4.8: Insertion loss for an individual source pair as a function of window location.
Active source pair is the middle idle semi-truck located in fourth lane from
the north.  * insertion loss of absorbing canopy; O insertion loss of
absorbing barriers; ÿ  insertion loss of absorbing barriers; + insertion loss of
all modifications.

4.3.3  Performance of Passive Techniques

To further evaluate the performance of the passive techniques, all sources were

activated in MATLAB. This represents the worst noise conditions, but a realistic condition

when the toll plaza is crowded.  The overall level and the insertion loss were evaluated as a

function of window position.  The results are shown in Figures 4.9 and 4.10.

The partial barriers appeared to have no perceivable effect.  All of the predicted

insertion loss data was a fraction of a dB.  The sound absorption of the barriers seemed to

be offset by the additional sound reflections and diffraction.  Similarly, the perfectly
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absorbing sound treatment on the canopy yielded less than 1 dB of insertion loss for the

majority of the window locations.  The negligible performance of the perfectly absorbing

canopy can explained by considering the path length.  The path length from the source to

the receiver directly is relatively short.  Sound waves that strike the canopy and reflect back

to the receive have traveled a substantially greater distance.  Due to spherical spreading,

pressure is reduced by an inverse law and energy is reduced by an inverse square law.

Therefore the level due to the reflected sound from the canopy becomes negligible when

compared to the direct field.  For treatment of the booths the insertion loss was almost 2 dB

for the majority of the window locations.

Of all the noise control solutions tested, the combined approach yielded the highest

performance.  With all noise control techniques combined, the insertion loss was typically

2.5 to 3 dB.  Since this combined noise control configuration addressed treatment of every

aspect of the toll plaza except the ground reflections, it further demonstrates the importance

of the direct field.  For the combined approach, the direct field accounted for all but 3 dB of

the sound pressure level.
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Figure 4.9: Overall level of all sources active as a function of window position.  ∇ level
of existing toll plaza; * level with absorbing canopy; O level with absorbing
barriers; ÿ  level with absorbing barriers; + level is all modifications.
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Figure 4.10: Insertion loss of all sources active as a function of window position.  *
insertion loss of absorbing canopy; O insertion loss of absorbing barriers; ÿ
insertion loss of absorbing barriers; + insertion loss of all modifications.

4.3.4  Verification of the Direct Field

In the previous two sections, results are presented which indicate the importance of

the direct field.  To confirm the importance of the direct field two additional model

configurations were tested.  The models consisted only of the toll plaza ground, the vehicle

sound sources, and the window receiver locations.  The first model utilized semi-truck

sources as described in the previous sections while the second model used passenger car

sources which will be explained in this section.  In MATLAB one lane of sources were

activated at a time.  The overall level and the insertion loss at the receiver locations of the

lane with active sources, only, were analyzed.  The verification models follow a strategy



58

where the ground behaves as in the reference model but every other aspect of the lane near

the sound source is perfectly absorbing with respect to sound.

One lane at a time semi-truck sources were activated, and the insertion loss results

for the case with booths and canopy was compared to the case with no booths or canopy.

Representative results are shown in Figures 4.11 and 4.12.  Reference the Appendix for

remaining results.  The results were consistent across each lane, varying only a fraction of a

dB.  The results confirmed the previous conclusions and indicate that the direct field

accounts for all but 3 to 4 dB.  While this is a noticeable change, the noise control potential

is limited to these reductions and no greater insertion loss can be achieved without

controlling the source.
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Figure 4.11: Overall level for all sources in the fourth lane from the north, semi-truck
sources.  ∇ level of existing toll plaza; * level with of direct field validation
model.
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Figure 4.12: Insertion loss for all sources in the fourth lane from the north, semi-truck
sources.  ∇ total absorbing elements as specified in the direct field validation
model.

To ensure that the insertion loss results obtained for semi-truck sources extend to

passenger vehicles, the lane source study was repeated for automobile sources.  Every

aspect of the previous source model remained the same except the source height and

spectrum.  Like the semi-truck source models, the automobile source models were

constructed with reference to the TNM source model data.  TNM models each automobile

with two sources, one at ground level and the other at 1.52 meters (5').  Like the semi-truck

source model, the lower source was moved to 0.15 meters (0.5') above ground level to

prevent anomalous transmissions through the ground of the model.  To model an idling

passenger car, TMN data for automobiles on average pavement traveling at 16.09 kph (10

mph) under cruise throttle was used.  To model an accelerating passenger car, TMN data for



61

automobiles on average pavement traveling at 32.19 kph (20 mph) under full throttle was

used.  The parameter selections were based upon the available options closest to the actual

conditions. Within MATLAB, the TNM one third octave band sound pressure level data

was converted to octave band sound power level data.  The source values used in

RAYNOISE are presented in Table 4.3.

Octave Band
Center
Frequency
(Hz)

63 125 250 500 1000 2000 4000 8000

Idle Low
Source (dB)

55.4902 60.5765 62.2934 65.2934 67.8664 67.9038 62.5070 54.8704

Idle High
Source (dB)

53.3641 58.4504 60.1673 63.1673 63.7646 55.1966 45.6051 37.9684

Acceleration
Low Source
(dB)

70.0928 74.9085 77.2934 81.0545 84.5933 83.9038 77.5070 70.4689

Acceleration
High Source
(dB)

67.9668 72.7824 75.1673 78.9285 80.3639 71.1966 60.6051 53.5669

Table 4.3:  The automobile source spectrum used in the direct field verification model.

One lane at a time car sources were activated, and the insertion loss results for the

case with booths and canopy was compared to the case with no booths or canopy.

Representative results are shown in Figures 4.13 and 4.14.  Reference the Appendix for

remaining results.  The results confirm the previous conclusions and indicate that the direct

field accounts for all but 2.5 to 4 dB which is very similar to the results obtained for semi-

truck sources.  As mentioned previously, passenger cars produce a much lower level than

semi-trucks and as a result do not produce that situations of greatest concern of this

research project.
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Figure 4.13: Overall level for all sources in the fourth lane from the north, car sources.  ∇
level of existing toll plaza; * level with of direct field validation model.
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Figure 4.14: Insertion loss for all sources in the fourth lane from the north, car sources.
∇ total absorbing elements as specified in the direct field validation model.

4.4  Conclusions

The models predict that realistic implementation of passive sound absorbing

techniques will achieve peak reductions of 3 dB.  Furthermore, the results suggest that the

direct field accounts for all but 3 to 4 dB of the sound pressure level experienced by the

tollbooth operators.  While a reduction of 3 dB is perceivable, it is not substantial.  In

borderline circumstances, 3 dB may be enough to comply with noise exposure regulations

or improve the environment.  However, to reduce the noise level significantly, the noise

control solution must address the direct field.  ANC solutions that are intended to deal with
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the direct field and an evaluation of their effect upon speech intelligibility will be discussed

in the next chapter.

The modeling approach described in Chapter 3 and implemented in this chapter

does not account for coherent reflections that cause reverberation and resonance.  Due to the

statistically random nature of vehicle noise, it is a reasonable approximation to use a source

model assuming incoherent waves where phase is neglected.  If resonance conditions occur

at the toll plaza, placement of absorbing material may have a more dramatic effect than

predicted by the model.
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5.  ACTIVE NOISE CONTROL SYSTEMS

5.1  Introduction

Active Noise Control (ANC) systems were investigated to address both

improvements in speech intelligibility and noise reduction.  The potential of active noise

control systems to reduce low frequency sounds within partially open enclosures has been

demonstrated in previous studies by Waters (1988) and Waters and Bernhard (1989).  The

impact of such systems on speech intelligibility, however, is not well understood.

Improvement may be possible if dominant low frequency sounds in traffic noise masks

speech signals and reduces intelligibility.

The investigation included three ANC headsets and a prototype ANC system

designed to create a local region of attenuation.  The systems utilize single channel feedback

algorithms.  Single channel feedback ANC system embodiments generally display strong

low frequency but are not adaptive.  For the purposes of evaluating the speech intelligibility

of the ANC systems, the Speech Intelligibility Index (SII) was used.  The SII is a weighted

signal to noise ratio calculation that takes into account masking and overloading effects.

Furthermore, the SII is appropriately sophisticated to achieve results highly correlated to

actual communication situations.  As long as an ANC system behaves linearly in the tested

frequency bands, the effects of the ANC system can be accounted for simply from its

transfer function.  The physical attenuation of each device for noise reduction purposes is

also of interest.  The system transfer functions were used to evaluate the noise attenuation

performance of the ANC systems.
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5.2  ANSI SII

An overview of the calculation procedures with emphasis on the fundamental

equations will be presented in this section.  Further details may be found in the ANSI S3.5-

1997 standard (American National Standards Institute,1998).

5.2.1  Calculation Method

The standard specifies four calculation methods for the SII (American National

Standards Institute,1998).  Each method uses a different set of frequency bands.  The

methods from highest to lowest level of sophistication utilize the following frequency

bands:  21 critical frequency bands, 18 one-third octave frequency bands, 17 critical

frequency bands, and 6 octave frequency bands.  Further information may be found in

chapter 3.4 and 4 (American National Standards Institute,1998).  The one-third octave

frequency band method was used for this investigation.  The one-third octave bands range

from a center frequency of 160 Hz to 8000 Hz.

5.2.2  Input Data

The next step of the SII calculation is the specification of input data.  Three

procedures are available to predict the SII accurately for different communication situations.

The first procedure is for low reverberant environments where speech and noise are

independent and can be measured.  The second procedure is for reverberant environments

where the speech signal causes echoes.  Echoes are a form of speech distortion and

contribute to the overall noise.  The third procedure is for communication conditions that
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don't meet the necessary conditions for the first two procedures, namely conditions

involving a device with unequal amplification to each ear.  Information concerning the

calculation methods for the input data, can be found in chapter 5 (American National

Standards Institute,1998).  The necessary conditions of the first procedure, where the input

data are independent and measured, are satisfied at the toll plaza.  Therefore the first

procedure for calculation of the input data was selected.

The input data for the SII calculation are the equivalent speech spectrum level, the

equivalent noise spectrum level, and the equivalent hearing spectrum threshold level.  The

speech spectrum level for the ith frequency band, designated 

€ 

E i  is the measured speech level

for a 1 Hz wide frequency band at the center frequency of the ith frequency band.

Suggested speech spectrum levels are included in the standard for normal, raised, loud, and

shout speech vocal efforts.  For situations where the speech is amplified or attenuated, an

equivalent speech level, 

€ 

′ E i , must be calculated from the speech spectrum levels and the

insertion gain of the speech amplification system.  The insertion gain for the ith frequency

band, designated 

€ 

Gi , is the system transfer function at the center frequency of the ith

frequency band.  The system transfer functions of interest for this study are the transfer

functions between the spectrum density levels with the ANC systems and the spectrum

density levels without the ANC systems.  The equivalent speech spectrum level for the ith

frequency band is

€ 

′ E i = E i −20 ∗ LOG d
d0

 
 
  

 
 + Gi

(5.1)

where 

€ 

d  is the distance in meters form the talker's lips to the listener's ears and 

€ 

d0 is the

reference distance, 1 meter.

In a similar manner, the equivalent noise spectrum level for the ith frequency band,

€ 

′ N i , is
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€ 

′ N i = N i + Gi
(5.2)

where 

€ 

N i , the noise spectrum level, is the measured noise level for a 1 Hz wide frequency

band at the center frequency of the ith frequency band.  The noise spectrum level is

measured at the location of the listener's head.

The equivalent hearing threshold spectrum level for the ith frequency band,

designated 

€ 

′ T i , is the arithmetic average of the hearing threshold level for all listeners of

interest.  The hearing threshold level is defined according to standard audiometric practice

as the pure tone threshold level minus the reference level.  The threshold level is a measure

of the deviation of a subject's hearing response from normal.  Further details will be given in

subsequent sections.

5.2.3  Calculation Procedures

The SII is calculated using the following steps.  The procedures are outlined in

chapter 4 and the physical description of the parameters is discussed in chapter 3 (American

National Standards Institute,1998).

The first step is to calculate the self-speech masking spectrum level for the ith

frequency band, 

€ 

Vi ,

€ 

Vi = ′ E i − 24. (5.3)

The self-speech masking spectrum is a measure of the masking content in the speech signal.

The upward slope of speech masking is

€ 

Ci = −80 + 0.6 ∗ Bi +10∗ LOG(Fi) − 6.353[ ] (5.4)

where 

€ 

Bi  is the larger of 

€ 

′ N i  or 

€ 

Vi  for the ith frequency band and 

€ 

Fi  is the center frequency

for the ith frequency band as given in Table 3 of the standard (American National Standards

Institute,1998).  The upward slope of speech masking accounts for the low frequency

masking of higher frequency information.  Accordingly, the most complicated parameter,
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the equivalent masking spectrum level, can be computed.  The equivalent masking spectrum

level accounts for the maskers.  The equivalent masking spectrum level of the lowest

frequency band is

€ 

Z1 = B1. (5.5)

For all but the lowest frequency band, the equivalent masking spectrum level for the ith

frequency band is

€ 

Zi =10 ∗ LOG 100.1∗ ′ N i + 10
0.1∗ B k + 3.32∗C k ∗LOG

0.89∗Fi
Fk

 
 
 

 
 
 

 
  

 
  

k=1

i−1

∑
 
 
 

  

 
 
 

  
.

(5.6)

The equivalent internal noise spectrum level for the ith frequency band, 

€ 

′ X i , is

€ 

′ X i = X i + ′ T i (5.7)

where 

€ 

X i  is the reference internal noise spectrum level as given in Table 3 (American

National Standards Institute,1998).  The reference internal noise is the hypothetical external

masking sound which would produce the reference hearing threshold previously mentioned.

For convenience in audiometric testing, the reference hearing threshold is defined as 0 dB

across all frequencies.  However, the human ear does not exhibit a true hearing threshold of

0 dB referenced to 20 micro Pascals.  The reference internal noise is used to correct the

hearing threshold.

The equivalent disturbance spectrum level for the ith frequency band, designated 

€ 

Di ,

is the larger of

€ 

Zi  or 

€ 

′ X i  for each of the frequency bands.  Usually a higher speech level

entails improved intelligibility.  However, at high levels the speech signal can overload the

ear.  The level distortion factor for the for the ith frequency band, 

€ 

Li , is

€ 

Li =1− ′ E i −Ui −10( ) 160 (5.8)

where 

€ 

Ui  is the standard speech spectrum level at normal vocal effort as given in Table 3 of

the standard (American National Standards Institute,1998).  The upper value of 

€ 

Li  is limited

to not exceed unity.
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The previous steps allow for the calculation of the band audibility function.  For a

given frequency band, the audibility function indicates the percentage of the speech signal in

the band that is intelligible.  It is a measure of the speech signal which is not masked or

distorted for a given frequency band.  The calculation of the band audibility function for the

ith frequency band is

€ 

Ai = Li ∗ ′ E i − Di +150( ) 30[ ] (5.9)

where the quantity in brackets is limited to values between 0 and 1.  The band importance

function,

€ 

Ii , is a measure of the percentage of information carried within a given frequency

band.  Therefore the SII is

€ 

S = Ii ∗ Ai
i=1

n

∑
(5.10)

5.2.4  Verification

Procedures were coded to calculate the SII using the one-third octave band

calculation method given the input data.  A verification case for the code was used to

establish that all of the calculation steps were coded correctly.  Annex C.2 includes a partial

calculation example for the one-third octave band method.  This verification exposed an

error with the parameter 

€ 

C1 as published in Table C.2 of the standard (American National

Standards Institute,1998).  The calculations were checked a second time manually to

confirm the typographical error.  This partial check established reliable coding of the first

few steps including the equivalent masking spectrum.  Verification of the equivalent

masking spectrum level is the only parameter where the calculation is rather involved.  The

coding of the remaining steps, none of which were difficult, was reviewed multiple times to

ensure correctness.
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5.3  Input Data Acquisition

As explained in the previous sections of this chapter, the three input data sets –

equivalent speech spectrum level, equivalent noise spectrum level, and equivalent hearing

threshold spectrum level – are necessary for the calculation of the SII.  To account for the

effects of each headset configuration, the insertion gain due to the system was measured.

5.3.1  Calculation of System Insertion Gain

The insertion gain as specified in the standard is "the difference in decibels between

the pure-tone sound pressure level at the eardrum with the amplification/attenuation device

in place and the pure tone sound pressure level at the eardrum with the device removed"

(American National Standards Institute,1998, chap 3.28).  The insertion gain for each ANC

device can be measured as the transfer function of the device.

To obtain the insertion gain spectra, a head and torso simulator with microphones at

the ear locations was used.  The head and torso simulator along with two high efficiency full

range loudspeakers were placed in the reverberant test room at Ray W. Herrick

Laboratories.  A photograph of this configuration is shown in Figure 5.1.  The reverberation

room was used to create a sound field of random incidence to minimize any directional

effects of the headsets.  This configuration provided the most challenging environment for

noise control.  Since the insertion gain, only, was calculated in the reverberation room, the

necessary conditions for input data calculations are not violated.

The input to the loudspeakers and the output from the microphones in the head and

torso simulator were connected to a professional grade computer sound card.  A test signal

was played by the computer through the loudspeakers, and simultaneously, the response at

the microphones of the head and torso simulator was recorded.  For each test signal,
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comparison of the response at the microphone with and without the headsets gives the

insertion loss of the device.  To create consistent headphone placement, procedures from

ANSI S12.42-1995 for the fitting of circumaural hearing protectors were used (American

National Standards Institute, 1995, chap. 9.2.1).

For the TechnoFirst external system, a series of measurements were made with a

sound level meter to establish the position of the system with respect to the head for best

performance.  In the final configuration, the speakers of the external ANC system were

placed 0.08 meters from the microphones of the head and torso simulator.  Note that the

error microphones for the system are attached to the eye glasses.  The system configuration

is displayed in Figure 5.2.  To begin the test a calibrated tone generator was placed on each

of the microphones and the response was recorded to establish a calibration signal for the

system.  Similarly, the noise floor of the test equipment was recorded.
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Figure 5.1:  Photograph of the test configuration to obtain ANC system transfer functions.
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Figure 5.2: Location of the TechnoFirst ANC system with respect to the head and torso
simulator.

5.3.1.1  Insertion Gain Test Signals

Three different 10 minute long test signals were created for calculation of the

insertion gain.  The first test signal was traffic noise.  On November 21, 2000

approximately one hour of traffic noise was recorded at the Portage Barrier Toll Plaza.  A

single microphone was centered near the rear doorway of the 3rd booth to the north and

positioned approximately 1.22 meters (4') above the floor.  The microphone protruded

approximately 0.08 meters (3") from the rear of the booth to capture the sound of traffic

traveling on the lane to the south.  At the rear of the tollbooth, vocal conversation levels were

minimal.  The lane in which traffic noise was recorded served primarily semi-truck vehicles.
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The monaural recording was made with a portable digital audio tape (DAT) machine and

matching, scientific quality microphone and power supply.  The sampling frequency of the

recording was 44,100 Hz with 16 bits of amplitude resolution.  The level was calibrated at

the beginning and the end of the recording.  The recording level was adjusted prior to

recording to be a maximum without clipping.  The time domain data captured on the DAT

recorder was digitally transferred to the test computer through the professional grade sound

card.  Due to a traffic accident on a distant section of the toll road, there were periods of

intermittent traffic flow at the toll plaza during the recording.  To create sounds from a

typical traffic pattern, two recorded sections were spliced to make a 10 minute wave file.

The second test signal was random noise.  The output of a random noise generator

was connected to the professional grade sound card.  A 10 minute wave file was collected

with a sampling frequency of 44,100 Hz and an amplitude resolution of 16 bits.

The third test signal was speech.  The lengthy monologue on track 6 of the

Stereophile Test CD contained male speech that was recorded with many different, quality

microphones (Holt, 1990).  This track was partially repeated once to create a test signal 10

minutes in length.

5.3.1.2  Processing Recorded Time Domain Data

MATLAB code was used to calculate the insertion gain for each device in terms of

one-third octave frequency bands.  As discussed previously, the response signals recorded

at the microphones of the head and torso simulator along with a calibration tone and noise

floor were saved as wave files.  MATLAB was used to load the calibration wave file,

calculate a power spectral density via a Fourier transform, and calibrate the level of the pure

tone.  The remaining wave files were loaded into MATLAB and the data was converted to a

calibrated power spectral density.  The calibrated frequency data was then converted using
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one-third octave band filters generated in MATLAB.  The frequency response of the one-

third octave band filter is shown in Figure 5.3.  The output of the one-third octave band

filters was converted to spectrum density levels as specified by the ANSI standard

(American National Standards Institute, 1998).  The system transfer function for each

device configuration was then calculated by subtracting the spectrum density level data for

the signal without any ANC device from the spectrum density level at the head and torso

simulator with the device.  From the insertion gain data, the input data were calculated as

described in the following sections.  The signal to noise ratio was high for all of the

insertion gain measurements; in the frequency range of interest the noise floor was at least

15 dB below the signal level and often 40 dB below the signal level.

Figure 5.3:  Frequency response of the one-third octave band filters.
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5.3.2  Calculation of the Equivalent Speech Spectrum Level

The equivalent speech spectrum levels were calculated using the standard speech

spectrum levels included in the ANSI document (American National Standards Institute,

1998).  For SII calculations, it is recommended that the standard speech spectrum levels are

used unless data is available for a sufficient number of talkers sampled over a sufficiently

long duration.  On average, it was believed that the distance between the speaker and listener

will be between 0.75 to 1 meter at the tollbooths. The shorter distance is representative of

the talker and listener leaning towards one another.  The standard speech spectrum levels are

given for four vocal efforts:  normal, raised, loud, and shout.

5.3.3  Calculation of the Equivalent Noise Spectrum Level

Three equivalent noise spectrum level sets were calculated using traffic noise

recordings from the Portage Barrier Toll plaza.  The first set was indicative of typical traffic

sounds from semi-trucks including deceleration, idle, and acceleration vehicle conditions.

The traffic noise calibration wave file and the10 minute traffic noise wave file created for the

insertion gain calculation were imported into MATLAB.  In MATLAB the calibrated traffic

noise file was filtered by one-third octave band filters.  The noise spectrum level was

calculated from the one-third octave band output.

The second equivalent noise spectrum level set represented idling semi-trucks.

Communication at the toll plaza would primarily occur while the truck was stationary and

idling.  Therefore, idling semi-truck noise would represent a realistic masking sound for the

toll plaza.  The audio file of typical semi-truck sounds was reviewed multiple times and

edited.  The result was over 5 minutes of various semi-truck idling sounds.  In MATLAB
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this calibrated traffic noise file was filtered by one-third octave band filters.  The noise

spectrum level was calculated from the one-third octave band output.

The final equivalent noise spectrum level set represents idling passenger cars.  The

TNM source data used for RAYNOISE predictions was reviewed to establish a transfer

function between idling semi-trucks and idling cars.  This transfer function was used to

convert the noise spectrum level for idling semi-trucks to a noise spectrum level for idling

cars.

5.3.4  Calculation Of Equivalent Hearing Threshold Spectrum Level

The standard specifies a reference hearing threshold spectrum level of 0 dB across

all frequencies.  This is the hearing threshold level spectrum for otologically normal

listeners between the ages of 18 to 30.  This reference level was used instead of measuring

and averaging the hearing threshold spectrum level of tollbooth workers.

5.4  Analysis and Results

Three ANC headsets systems – the Noise Buster Extreme, the ProActive 1500, and

the ProActive 3500 – and one external ANC device designed to be mounted to the tollbooth

to create a local region of attenuation were tested.  Photographs of the ANC systems are

shown in Figures 5.4 through 5.7.  The three ANC headset systems were manufactured by

NCT Inc.  The Noise Buster Extreme is a partially open ear device built for listening to

music through a portable entertainment system.  Open ear headsets do not suppress ambient

noise through passive approaches.  The ProActve 1500 is an open ear designed for

industrial applications where the ear pads rest upon the user's ears.  The ProActive 3500 is a

closed ear circumaural industrial design where the ear cups seal against the user's head.  The
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closed ear design offers significant passive attenuation which provides further noise

attenuation at high frequency.  The external ANC system is a prototype built by

TechnoFirst which is researching a similar configuration to be installed in airplane seats.

While the external ANC system will have less ANC attenuation due to physical limitations,

it does not contain passive components which may impede communication.  The lack of

passive components additionally is often better for user comfort.

Figure 5.4:  Photo of the NCT Noise Buster Extreme ANC Headsets.
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Figure 5.5:  Photo of the NCT ProActive 1500 ANC Headsets.
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Figure 5.6:  Photo of the NCT ProActive 3500 ANC Headsets.
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Figure 5.7: Photo of the TechnoFirst Prototype External ANC System and the head and
torso simulator.

5.4.1  Physical Attenuation Performance of ANC Systems

As described in section 5.3.1.2, MATLAB code was used to calculate the system

transfer function for each ANC system in terms of one-third octave bands.  The results are

displayed graphically in Figures 5.8 through 5.11.  The insertion loss performance of the

tested systems is relatively immune to the type of input signal used.  The systems behave

linearly and therefore meet the necessary conditions of the ANSI SII calculation

procedures.

The NCT Noise Buster Extreme headset and the NCT ProActive 1500 exhibit

similar performance characteristics.  Both have a maximum low frequency attenuation
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greater than 10 dB at 250 Hz.  Both devices have amplification in the 50 Hz frequency

region and the 1000 Hz frequency region.  The Noise Buster Extreme has higher frequency

attenuation than the ProActive 1500, which is a result of passive components.

The NCT ProActive 3500 amplifies the low frequencies levels near 40 Hz.

However, the ProActive 3500 exhibits significant attenuation performance for the rest of the

frequency range.  Much of the low frequency reduction is in excess of 20 dB with a

maximum of 40 dB at 3000 Hz.

The prototype external ANC system from TechnoFirst produced 10 dB of fairly

narrow band reduction at 200 Hz.  Low frequencies and middle frequencies were amplified.

The TechnoFirst system did not display the passive high frequency noise reduction of the

headsets.  In addition, some of the high frequency sounds were amplified due to near

reflections caused by the physical constructs of the TechnoFirst system.



84

Figure 5.8: Transfer function for the NCT Noise Buster Extreme ANC headset, right ear
with the active noise control setting at the maximum position in terms of
one-third octave bands for different signals.  – random noise signal; ..
speech signal; -- traffic signal.
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Figure 5.9: Transfer function for the NCT ProActive 1500 ANC headset, right ear in
terms of one-third octave bands for different signals.  – random noise signal;
.. speech signal; -- traffic signal.
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Figure 5.10: Transfer function for the NCT ProActive 3500 ANC headset, right ear in
terms of one-third octave bands for different signals.  – random noise signal;
.. speech signal; -- traffic signal.
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Figure 5.11: Transfer function for the TechnoFirst external ANC system, right ear in
terms of one-third octave bands for different signals.  – random noise signal;
.. speech signal; -- traffic signal.

5.4.2  Noise Reduction Performance

Attenuation performance for hearing protectors is usually given in terms of a single

number called the noise reduction rating (NRR).  The calculation procedures are specified

in Title 40 of the Code of Federal Regulation (CFR) part 211.207 (National Archives and

Records Administration, 2001b).  The testing procedures are adopted from ANSI S3.19-

1974 which describes a subjective method to assess the performance of hearing protectors

based upon hearing threshold levels (American National Standards Institute, 1974).

Adaptations were made to the NRR calculation procedures to utilize objective rather

than subjective transfer function data.  In addition, the summation of energy, when needed,
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was handled in an exact way instead of the approximate method described in the CFR.

Table 5.1 lists the NRR as calculated via the modified method.  The results indicate that

only the NCT ProActive 3500 offers significant noise protection.

ANC System Modified NRR (dB)
NCT Noise Buster Extreme, Max setting 5
NCT ProActive 1500 1
NCT ProActive 3500 24
TechnoFirst external prototype 0

Table 5.1:  NRR for the ANC systems.

5.4.3  Speech Intelligibility Performance of ANC Systems

The Speech Intelligibility Index for a given communication system is a measure of

the percentage of the speech cues available to the listener in the presence of noise.  The SII

ranges from a maximum of 1.00 to a minimum of 0.00.  According to the standard, poor

communication systems have a SII below 0.45 while good communication systems have a

SII above 0.75.

To investigate the overloading effect of high speech levels, the SII for the four vocal

effort levels was calculated with no system gain and no external noise.  The results are

displayed in Table 5.2.  The distance between the talker's lips and the listener's ears varied

from 0.5 meters to 1 meter.  As expected, the results show a perfect SII for the normal vocal

effort.  Due to overloading effects, the higher vocal efforts resulted in a slight decrease in

the SII.
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System
Insertion
Gain

Distance (m) Vocal Effort Equivalent
Noise

Equivalent
Hearing
Threshold

SII

None 1.00 Normal None Reference 1.00
None 1.00 Raised None Reference 1.00
None 1.00 Loud None Reference 0.97
None 1.00 Shout None Reference 0.92

None 0.75 Normal None Reference 1.00
None 0.75 Raised None Reference 1.00
None 0.75 Loud None Reference 0.95
None 0.75 Shout None Reference 0.90

None 0.50 Normal None Reference 1.00
None 0.50 Raised None Reference 0.98
None 0.50 Loud None Reference 0.93
None 0.50 Shout None Reference 0.88

Table 5.2:  SII results for no system gain, no external noise.

5.4.3.1  Speech Intelligibility Performance for Typical Semi-Truck Noise

The models were reevaluated with typical semi-truck traffic noise that included

decelerating, idling, and accelerating vehicle conditions.  The results are displayed in Table

5.3.  All of the SII scores are below 0.45.  It may be inferred that the toll plaza is a poor

communication environment, even for the highest vocal effort.  In the presence of typical

semi-truck traffic noise, the vocal effort and the distance between the talker's lips and

listener's ears become highly important to speech intelligibility.  As shown in Figures 5.12

through 5.13, the vocal effort and the distance affect the signal to noise ratio.  In band

masking may be more important than low frequency masking.
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System
Insertion
Gain

Distance (m) Vocal Effort Equivalent
Noise

Equivalent
Hearing
Threshold

SII

None 1.00 Normal Traffic Noise Reference 0.00
None 1.00 Raised Traffic Noise Reference 0.00
None 1.00 Loud Traffic Noise Reference 0.06
None 1.00 Shout Traffic Noise Reference 0.27

None 0.75 Normal Traffic Noise Reference 0.00
None 0.75 Raised Traffic Noise Reference 0.01
None 0.75 Loud Traffic Noise Reference 0.12
None 0.75 Shout Traffic Noise Reference 0.34

None 0.50 Normal Traffic Noise Reference 0.00
None 0.50 Raised Traffic Noise Reference 0.04
None 0.50 Loud Traffic Noise Reference 0.21
None 0.50 Shout Traffic Noise Reference 0.43

Table 5.3:  SII results for no system gain, actual traffic noise.
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Figure 5.12: Comparison of semi-truck traffic spectrum level density with speech
spectrum level density for a distance of 1.0 meters from talker's lips to
listener's ears.  X normal speech; ÿ  raised speech; ∇ loud speech; + shout
speech; O semi-truck traffic noise.
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Figure 5.13: Comparison of semi-truck traffic spectrum level density with speech
spectrum level density for a distance of 0.75 meters from talker's lips to
listener's ears.  X normal speech; ÿ  raised speech; ∇ loud speech; + shout
speech; O semi-truck traffic noise.
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Figure 5.14: Comparison of semi-truck traffic spectrum level density with speech
spectrum level density for a distance of 0.5 meters from talker's lips to
listener's ears.  X normal speech; ÿ  raised speech; ∇ loud speech; + shout
speech; O semi-truck traffic noise.

Though the communication environment is acoustically poor, communication may

be aided by other means such as gestures resulting in visual cues.  The communication

between tollbooth operators and patrons of the toll road is often simple and of a known

context, which may improve information transfer.  From observation, toll takers generally

communicate with loud or shouting vocal effort.  Despite these efforts to communicate, the

number of incidences of miscommunication are high although communication is generally

accomplished.

The effects of the ANC systems on the SII for tollbooth conditions was

investigated.  The results are displayed in Table 5.4.  The results vary little from the
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previous case and suggest that all of the devices improve the SII a negligible amount.  The

system transfer functions equally affects both the noise spectrum and the vocal spectrum.

Since both spectrums are affected equally, the overall dominance of the noise remains.

Therefore the ANC systems do not directly improve the signal to noise ratio.  The ANC

systems can only be used to reduce low frequency masking effects and level overloading

effects.  The ProActive 3500 had the greatest benefit on the SII.  Since the ProActive 3500

has high attenuation relative to the other active control systems, the results suggests that

overloading of the ear may be an important factor for speech intelligibility in toll plaza

applications.  In some of the cases, the SII results went down with the use of NCT Noise

Buster Extremes, NCT ProActive 1500, and the TechnoFirst prototype.  All of these devices

exhibit some amplification at particular bands.  The slight decrease in intelligibility may be

due to overloading effects with select frequency band amplification.
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System
Insertion Gain

Distance (m) Vocal Effort Equivalent
Noise

Equivalent
Hearing
Threshold

SII

NB, Max 1.00 Normal Traffic Noise Reference 0.00
PA 1500 1.00 Normal Traffic Noise Reference 0.00
PA 3500 1.00 Normal Traffic Noise Reference 0.00
TechnoFirst 1.00 Normal Traffic Noise Reference 0.00
NB, Max 1.00 Raised Traffic Noise Reference 0.00
PA 1500 1.00 Raised Traffic Noise Reference 0.00
PA 3500 1.00 Raised Traffic Noise Reference 0.00
TechnoFirst 1.00 Raised Traffic Noise Reference 0.00
NB, Max 1.00 Loud Traffic Noise Reference 0.06
PA 1500 1.00 Loud Traffic Noise Reference 0.07
PA 3500 1.00 Loud Traffic Noise Reference 0.06
TechnoFirst 1.00 Loud Traffic Noise Reference 0.05
NB, Max 1.00 Shout Traffic Noise Reference 0.25
PA 1500 1.00 Shout Traffic Noise Reference 0.25
PA 3500 1.00 Shout Traffic Noise Reference 0.31
TechnoFirst 1.00 Shout Traffic Noise Reference 0.26

NB, Max 0.75 Normal Traffic Noise Reference 0.00
PA 1500 0.75 Normal Traffic Noise Reference 0.00
PA 3500 0.75 Normal Traffic Noise Reference 0.00
TechnoFirst 0.75 Normal Traffic Noise Reference 0.00
NB, Max 0.75 Raised Traffic Noise Reference 0.01
PA 1500 0.75 Raised Traffic Noise Reference 0.01
PA 3500 0.75 Raised Traffic Noise Reference 0.01
TechnoFirst 0.75 Raised Traffic Noise Reference 0.01
NB, Max 0.75 Loud Traffic Noise Reference 0.10
PA 1500 0.75 Loud Traffic Noise Reference 0.11
PA 3500 0.75 Loud Traffic Noise Reference 0.12
TechnoFirst 0.75 Loud Traffic Noise Reference 0.10
NB, Max 0.75 Shout Traffic Noise Reference 0.32
PA 1500 0.75 Shout Traffic Noise Reference 0.32
PA 3500 0.75 Shout Traffic Noise Reference 0.39
TechnoFirst 0.75 Shout Traffic Noise Reference 0.33

NB, Max 0.50 Normal Traffic Noise Reference 0.00
PA 1500 0.50 Normal Traffic Noise Reference 0.00
PA 3500 0.50 Normal Traffic Noise Reference 0.00
TechnoFirst 0.50 Normal Traffic Noise Reference 0.00
NB, Max 0.50 Raised Traffic Noise Reference 0.05
PA 1500 0.50 Raised Traffic Noise Reference 0.05
PA 3500 0.50 Raised Traffic Noise Reference 0.04
TechnoFirst 0.50 Raised Traffic Noise Reference 0.04
NB, Max 0.50 Loud Traffic Noise Reference 0.18
PA 1500 0.50 Loud Traffic Noise Reference 0.19
PA 3500 0.50 Loud Traffic Noise Reference 0.23
TechnoFirst 0.50 Loud Traffic Noise Reference 0.20
NB, Max 0.50 Shout Traffic Noise Reference 0.42
PA 1500 0.50 Shout Traffic Noise Reference 0.42
PA 3500 0.50 Shout Traffic Noise Reference 0.50
TechnoFirst 0.50 Shout Traffic Noise Reference 0.42

Table 5.4:  SII results in the presence of actual semi-truck noise.
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5.4.3.2  Speech Intelligibility Performance for Idle Truck Noise

Communication primarily occurs while a vehicle is stationary and idling.  As a

realistic communication situation, idling semi-truck noise was used in the assessment of the

ANC systems.  The results are displayed in Table 5.5.  There is a slight improvement, up to

0.03, in the SII results.  The small improvement suggests that the average spectrum is

approximately the same as the idling noise spectrum.  High acceleration levels are mostly

canceled by low levels as traffic approaches the tollbooth.  As a further investigation, the

idling semi-truck noise spectrum was compared to the various vocal effort spectra in

Figures 5.15 through 5.17.
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System Insertion Gain Distance (m) Vocal Effort Equivalent Noise Equivalent Hearing
Threshold

SII

None 1.00 Normal Idle Truck Reference 0.00
NB, Max 1.00 Normal Idle Truck Reference 0.00
PA 1500 1.00 Normal Idle Truck Reference 0.00
PA 3500 1.00 Normal Idle Truck Reference 0.00
TechnoFirst 1.00 Normal Idle Truck Reference 0.00
None 1.00 Raised Idle Truck Reference 0.00
NB, Max 1.00 Raised Idle Truck Reference 0.00
PA 1500 1.00 Raised Idle Truck Reference 0.00
PA 3500 1.00 Raised Idle Truck Reference 0.00
TechnoFirst 1.00 Raised Idle Truck Reference 0.00
None 1.00 Loud Idle Truck Reference 0.07
NB, Max 1.00 Loud Idle Truck Reference 0.07
PA 1500 1.00 Loud Idle Truck Reference 0.08
PA 3500 1.00 Loud Idle Truck Reference 0.08
TechnoFirst 1.00 Loud Idle Truck Reference 0.06
None 1.00 Shout Idle Truck Reference 0.30
NB, Max 1.00 Shout Idle Truck Reference 0.27
PA 1500 1.00 Shout Idle Truck Reference 0.28
PA 3500 1.00 Shout Idle Truck Reference 0.34
TechnoFirst 1.00 Shout Idle Truck Reference 0.28

None 0.75 Normal Idle Truck Reference 0.00
NB, Max 0.75 Normal Idle Truck Reference 0.00
PA 1500 0.75 Normal Idle Truck Reference 0.00
PA 3500 0.75 Normal Idle Truck Reference 0.00
TechnoFirst 0.75 Normal Idle Truck Reference 0.00
None 0.75 Raised Idle Truck Reference 0.01
NB, Max 0.75 Raised Idle Truck Reference 0.02
PA 1500 0.75 Raised Idle Truck Reference 0.02
PA 3500 0.75 Raised Idle Truck Reference 0.02
TechnoFirst 0.75 Raised Idle Truck Reference 0.01
None 0.75 Loud Idle Truck Reference 0.14
NB, Max 0.75 Loud Idle Truck Reference 0.12
PA 1500 0.75 Loud Idle Truck Reference 0.12
PA 3500 0.75 Loud Idle Truck Reference 0.15
TechnoFirst 0.75 Loud Idle Truck Reference 0.12
None 0.75 Shout Idle Truck Reference 0.37
NB, Max 0.75 Shout Idle Truck Reference 0.35
PA 1500 0.75 Shout Idle Truck Reference 0.35
PA 3500 0.75 Shout Idle Truck Reference 0.42
TechnoFirst 0.75 Shout Idle Truck Reference 0.36

None 0.50 Normal Idle Truck Reference 0.00
NB, Max 0.50 Normal Idle Truck Reference 0.00
PA 1500 0.50 Normal Idle Truck Reference 0.00
PA 3500 0.50 Normal Idle Truck Reference 0.00
TechnoFirst 0.50 Normal Idle Truck Reference 0.00
None 0.50 Raised Idle Truck Reference 0.05
NB, Max 0.50 Raised Idle Truck Reference 0.06
PA 1500 0.50 Raised Idle Truck Reference 0.06
PA 3500 0.50 Raised Idle Truck Reference 0.05
TechnoFirst 0.50 Raised Idle Truck Reference 0.05
None 0.50 Loud Idle Truck Reference 0.24
NB, Max 0.50 Loud Idle Truck Reference 0.20
PA 1500 0.50 Loud Idle Truck Reference 0.21
PA 3500 0.50 Loud Idle Truck Reference 0.26
TechnoFirst 0.50 Loud Idle Truck Reference 0.22
None 0.50 Shout Idle Truck Reference 0.46
NB, Max 0.50 Shout Idle Truck Reference 0.45
PA 1500 0.50 Shout Idle Truck Reference 0.44
PA 3500 0.50 Shout Idle Truck Reference 0.53
TechnoFirst 0.50 Shout Idle Truck Reference 0.45

Table 5.5:  SII results in the presence of idle semi-truck noise.
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Figure 5.15: Comparison of idling semi-truck traffic spectrum level density with speech
spectrum level density for a distance of 1.0 meters from talker's lips to
listener's ears.  X normal speech; ÿ  raised speech; ∇ loud speech; + shout
speech; O idling semi-truck traffic noise.
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Figure 5.16: Comparison of idling semi-truck traffic spectrum level density with speech
spectrum level density for a distance of 0.75 meters from talker's lips to
listener's ears.  X normal speech; ÿ  raised speech; ∇ loud speech; + shout
speech; O idling semi-truck traffic noise.
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Figure 5.17: Comparison of idling semi-truck traffic spectrum level density with speech
spectrum level density for a distance of 0.5 meters from talker's lips to
listener's ears.  X normal speech; ÿ  raised speech; ∇ loud speech; + shout
speech; O idling semi-truck traffic noise.

5.4.3.3  Speech Intelligibility Performance for Idle Car Noise

TNM data was used to develop a transfer function between idling semi-truck noise

and idling passenger vehicle noise.  The SII in the presence of car noise without ANC

systems was investigated.  A listing of the results is shown in Table 5.6.  Car noise does not

pose a problem for speech intelligibility.  This prediction is consistent with the survey

responses of the toll plaza employees discussed in Chapter 2.  The various vocal effort

spectra are compared to idling car noise spectrum in Figures 5.18 through 5.20.
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System
Insertion
Gain

Distance (m) Vocal Effort Equivalent
Noise

Equivalent
Hearing
Threshold

SII

None 1.00 Normal Idle Car Reference 0.36
None 1.00 Raised Idle Car Reference 0.60
None 1.00 Loud Idle Car Reference 0.83
None 1.00 Shout Idle Car Reference 0.91

None 0.75 Normal Idle Car Reference 0.44
None 0.75 Raised Idle Car Reference 0.68
None 0.75 Loud Idle Car Reference 0.89
None 0.75 Shout Idle Car Reference 0.89

None 0.50 Normal Idle Car Reference 0.56
None 0.50 Raised Idle Car Reference 0.79
None 0.50 Loud Idle Car Reference 0.93
None 0.50 Shout Idle Car Reference 0.88

Table 5.6:  SII results in the presence of idle car noise.
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Figure 5.18: Comparison of idling car traffic spectral density with speech spectral density
for a distance of 1.0 meters from talker's lips to listener's ears.  X normal
speech; ÿ  raised speech; ∇ loud speech; + shout speech; O idling car traffic
noise.
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Figure 5.19: Comparison of idling car traffic spectrum level density with speech spectrum
level density for a distance of 0.75 meters from talker's lips to listener's ears.
X normal speech; ÿ  raised speech; ∇ loud speech; + shout speech; O idling
car traffic noise.
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Figure 5.20: Comparison of idling car traffic spectrum level density with speech spectrum
level density for a distance of 0.5 meters from talker's lips to listener's ears.
X normal speech; ÿ  raised speech; ∇ loud speech; +shout speech; O idling
car traffic noise.

5.4.4  Characteristics of Systems for Improved Communication

The predicted speech intelligibility results for toll plaza conditions suggest that

semi-truck noise tends to dominate the sound field and overload the ear.  To address the

poor signal to noise ratio and the overloading effect, improved systems were investigated.

Realistic models and results are discussed in the following sections.

5.4.4.1  Concepts for Improved Communication Systems
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Modeling of a directional microphone attached to a sealed ANC headset was

explored to improve the signal to noise ratio.  The improved system was created to attenuate

environmental noise with the headset and selectively reinforce speech with a directional

microphone.  Closed ear, sealed headsets offer strong passive noise reduction at high

frequencies.  To attenuate all frequencies, a sealed ANC headset like the NCT ProActive

3500 is desirable.  While the ANC headset reduces the level it does not directly increase the

signal to noise ratio.  Directional microphones exhibit a greater sensitivity for sounds in a

particular direction than for omni-directional sounds.  A realistic implementation of a dipole

directional microphone would yield a 6 dB increase for sounds incident from the front.

Therefore frontal sounds, such as the vocalization from toll road patrons, would be

increased by 6 dB over the more omni-directional traffic noise.  By attaching the output

signal of a directional microphone to the acoustic drivers within a seal ANC headset, the

signal to noise ratio would be improved.

A 6 dB increase in signal over noise produces the same signal levels as reducing the

distance between the talker's lips and the listener's ears by a factor of two.  The positive

speech intelligibility effects by decreasing the distance have been illustrated in previous

sections.  Modeling analog filters inline with the directional microphone offers further

control of the signal reaching the attendants ears.  By filtering the signal, masking and

overloading effects can be further investigated.

5.4.4.2  Sealed Headset with Directional Microphone

The sealed ANC headset with a dipole directional microphone was modeled using a

0 dB insertion gain for the noise and amplifying the speech signal by 6 dB.  Therefore the

noise level is the same as that without the headsets, but the speech was increased by 6 dB.

This concept assumes that the microphone input would dominate the sound entering the ear
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cup of the headset and make the insertion gain of the sealed ANC headset negligible.  It also

assumes that the gain of the microphone system would be set to bring the noise level inside

the ear cup to the same level as the case with no noise control solution.  The SII results for

the improved systems are displayed in Table 5.7.  Comparing the results from Table 5.5 and

Table 5.7, the use of a sealed ANC headset with a single dipole directional microphone can

yield as much as a 0.20 increase in SII for loud and shout vocal efforts which are common

at the toll plaza.  This improvement is markedly better than that obtained for any of the

tested ANC systems.

5.4.4.3  Filtering the Directional Microphone Signal

Low frequency masking effects were investigated by modeling a high pass filter for

the directional microphone signal.  The transfer function of the high pass filter attenuated

the 160 Hz to 315 Hz bands by 30 dB.  These frequency bands were selected based upon

high noise level and low speech importance.  The results are displayed in Table 5.7.  Using

a high pass filter for the directional microphone signal seems to improve the SII, but often

less than 0.01.

A band pass filter was modeled using the low pass filter insertion gain with an

additional attenuation of 30 dB in the 6300 Hz to 8000 Hz bands.  These frequency bands

were selected based upon high noise level and low band importance.  The band pass filter

appeared to reduce the SII.  Low frequency sounds tend to mask higher frequency sound

more than high frequency sounds tend to mask low frequency sounds.  The masking profile

due to a pure tone is display in Figure 5.21.  Therefore attenuating high frequencies reduces

the amount of information and in turn the SII while attenuating low frequencies may slightly

improve the SII.  For traffic noise, the spreading effects of masking are only important

when a positive signal to noise ratio exists in band.  As an example, when 500 Hz noise
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dominates 500 Hz speech, the masking of effect of a lower frequency sound are not as

significant as the poor signal to noise ratio at 500 Hz.

Figure 5.21: Masking profile due to a pure tone of 400 Hz at 80 dB.  Data from Egan
and Hake (1950, p. 623).

Overloading effects and amplitude control for the directional microphone signal

were modeled with a -5 dB insertion gain and a flat -10 dB insertion gain.  Transfer

functions with greater attenuation not were not believed to be desirable.  The greater the

attenuation of the directional microphone signal, the more significant the transfer function of

the sealed ANC headset becomes.  In addition, the selected attenuation levels were near the

gain provided by the dipole directional microphone.  A greater attenuation could cause the

toll booth attendant to speak at a level too low for the toll road customer to understand.  The
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results are displayed in Table 5.7.  Reducing the level of the sound entering the ear

improved the SII by as much as 0.05.  This is approximately the same improvement in SII

observed for the NCT ProActive 3500 as demonstrated in Table5.5.  The results indicate

that overloading is more important than low frequency masking.

As a final study, the low pass filter was combined with the flat –10 dB insertion

gain.  The insertion gain characteristics were –30 dB in the 160 Hz to 315 Hz frequency

bands, with –10 dB in the remaining frequency bands.  The results are displayed in Table

5.7.  The combined filter seems to improve the SII, but less than 0.01 over the level control

alone.  The results confirm that overloading is more important that low frequency masking.
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System Insertion
Gain

Distance
(m)

Vocal
Effort

Equivalent
Noise

Equivalent Hearing
Threshold

SII

Sealed Headset with
Directional Mic

0.75 Normal Idle Truck Reference 0.02

System with high pass
filter

0.75 Normal Idle Truck Reference 0.02

System with band pass
filter

0.75 Normal Idle Truck Reference 0.02

System with 5 dB
reduction

0.75 Normal Idle Truck Reference 0.02

System with 10 dB
reduction

0.75 Normal Idle Truck Reference 0.02

System with 10 dB
reduction and high pass

0.75 Normal Idle Truck Reference 0.02

Sealed Headset with
Directional Mic

0.75 Raised Idle Truck Reference 0.09

System with high pass
filter

0.75 Raised Idle Truck Reference 0.09

System with band pass
filter

0.75 Raised Idle Truck Reference 0.09

System with 5 dB
reduction

0.75 Raised Idle Truck Reference 0.10

System with 10 dB
reduction

0.75 Raised Idle Truck Reference 0.10

System with 10 dB
reduction and high pass

0.75 Raised Idle Truck Reference 0.10

Sealed Headset with
Directional Mic

0.75 Loud Idle Truck Reference 0.31

System with high pass
filter

0.75 Loud Idle Truck Reference 0.31

System with band pass
filter

0.75 Loud Idle Truck Reference 0.30

System with 5 dB
reduction

0.75 Loud Idle Truck Reference 0.32

System with 10 dB
reduction

0.75 Loud Idle Truck Reference 0.34

System with 10 dB
reduction and high pass

0.75 Loud Idle Truck Reference 0.34

Sealed Headset with
Directional Mic

0.75 Shout Idle Truck Reference 0.52

System with high pass
filter

0.75 Shout Idle Truck Reference 0.53

System with band pass
filter

0.75 Shout Idle Truck Reference 0.50

System with 5 dB
reduction

0.75 Shout Idle Truck Reference 0.55

System with 10 dB
reduction

0.75 Shout Idle Truck Reference 0.57

System with 10 dB
reduction and high pass

0.75 Shout Idle Truck Reference 0.57

Table 5.7:  SII results for improved systems in the presence of idle semi-truck noise.
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5.4.4.4  Directional Microphone Directivity Index

To make significant improvements to the speech intelligibility at the toll plaza, a

system should create a positive signal to noise ratio and must attenuate the level reaching the

ears to minimize overloading effects.

The microphone directivity index needed to produce a good communication system

for normal vocal effort was explored.  A pair of microphones spaced 0.03 meters and

positioned in a dipole configuration creates the 6 dB gain for on axis sounds versus omni-

directional sounds discussed in the previous sections.  Sets of dipole microphones can be

used to create a higher order configuration with greater directivity.  A distance of 0.75

meters between the talker's lips and the listener's ears was selected for this investigation.  To

address overloading effects, greater attenuation was used than in the previous study.  The

signal amplitude was set such that noise with the headset is 20 dB below the noise level

without the headset.  The experienced noise level with the tested system, therefore, is near

that with a sealed ANC headset alone.  The directional microphone configurations will

augment the speech above this noise level.  Again, it was assumed that the microphone input

would dominate the sound entering the ear cup of the headset and make the insertion gain of

the sealed ANC headset negligible.  Though not as justified as in the previous study, such

an assumption is satisfactory for this idealized study.  Result of the investigation are

displayed in Table 5.8.  The results show that a high order directional microphone with a

directivity index of 36 dB is sufficient to create a good communication system under normal

vocal effort and realistic distances with 20 dB of microphone signal attenuation.
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Directivity
Index (dB)

System
Insertion Gain

Distance
(m)

Vocal
Effort

Equivalent
Noise

Equivalent
Hearing
Threshold

SII

6 Sealed Headset
with Directional
Mic and 20 dB
reduction

0.75 Normal Idle Truck Reference 0.02

12 Sealed Headset
with Directional
Mic and 20 dB
reduction

0.75 Normal Idle Truck Reference 0.08

18 Sealed Headset
with Directional
Mic and 20 dB
reduction

0.75 Normal Idle Truck Reference 0.26

24 Sealed Headset
with Directional
Mic and 20 dB
reduction

0.75 Normal Idle Truck Reference 0.46

30 Sealed Headset
with Directional
Mic and 20 dB
reduction

0.75 Normal Idle Truck Reference 0.65

36 Sealed Headset
with Directional
Mic and 20 dB
reduction

0.75 Normal Idle Truck Reference 0.80

Table 5.8:  SII results for improved systems in the presence of idle semi-truck noise.

As a concluding thought, the changes in level produced by the improved ANC

headset configurations may make it more difficult for customers to understand toll road

employees.  Upon wearing the headset, the noise level is lowered and the speech is easily

understood.  The tollbooth employee may be inclined to speak with a normal vocal effort.

At this level, the employees' speech will be overpowered by the traffic noise and will not be

intelligible to the toll road patrons.  To address this potential problem, loudspeakers could

be attached to the tollbooth which could be used to reinforce the speech of the tollbooth

employee.
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5.5  Summary

The ANSI SII calculation procedures for the one-third octave band method and

direct measurement of the input data were coded.  The insertion gain of three ANC headsets

and an external ANC system was measured in the presence of three test signals.  The NRR

for the headsets was calculated in a modified manner to account for the objective transfer

function data obtained for each system.  The NCT Noise Buster Extreme produced a NRR

of 5 while the NCT ProActive produced a NRR of 24.  The remaining systems did not yield

noteworthy NRR scores.

Without any of the ANC systems used, which is the current condition at the toll

plaza, the SII results indicated that the environment was poor with respect to communication

in the presence of semi-truck noise.  With the system transfer functions of the ANC

systems added, the SII changed very little.  The results suggest that the semi-truck traffic

noise level at the toll plaza overpowers the speech spectrum level and creates a low signal to

noise ratio.  The results for idle car noise show that passenger cars noise does not present a

problem for speech intelligibility.

Improved systems which increased the signal to noise ratio were modeled and

tested.  The results indicate that use of a sealed ANC headset with a single dipole directional

microphone yield a significant improvement in SII, as much a 0.20 increase, for vocal

efforts which are common at the toll plaza.  In the context of speech intelligibility in the

presence of toll plaza noise, it was found that level overloading effects are more significant

than low frequency masking and must be addressed in the solutions.  Results from higher

order microphone directivity investigation demonstrated that a good communication system

(a SII of 0.75 or above) is achievable for normal vocal effort.
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6.  CONCLUSIONS AND RECOMMENDATIONS

In this chapter, conclusions drawn from this research and recommendations for

future work will be presented.

6.1  Conclusions

Survey results confirmed that noise at toll plazas creates an unpleasant work

environment and hinders communication.  The results also suggest that the level may be

near levels known to cause hearing damage.  Passive noise control solutions were

considered including:  construction of partial barriers with a sound absorbing surface

treatment, application of sound absorbing material to the overhead canopy, and treatment of

exterior tollbooth walls with sound absorbing material.  A beam tracing method was

employed to model the noise conditions and test reasonable architectural noise control

solution.

Verification studies suggested that beam tracing methods offer the potential to

accurately model the ambient conditions around toll plazas and to evaluate the impact of

possible noise control solutions.  A detailed model of a specific, existing toll plaza located

near Portage, Indiana was developed.  The model considered the effects of the tollbooths,

the canopy, ground reflections, diffraction around obstacles, and sound absorption from

different materials.  As a worst case scenario, semi-truck sources for idling and accelerating

conditions were assumed.  Source strengths were established using FHWA's TNM

software.
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The plaza model results suggest that the maximum achievable noise reduction using

passive methods is 3 dB, a noticeable but rather modest decrease.  In borderline

circumstances, 3 dB may be enough to comply with noise exposure regulations or improve

the environment.  The results further suggest that the direct field accounts for all by 3 to 4

dB of the sound pressure level experienced by the tollbooth operators.  To reduce the noise

level significantly, noise control solution must be aimed at reducing the direct field.  The

modeling approach did not account for coherent reflections that cause reverberation and

resonance.  If resonance conditions occur, placement of absorbing material may have a more

dramatic effect than predicted by the model.

The performance of single channel feedback ANC systems was investigated.  Such

devices address some of the weaknesses inherent in passive noise control solutions,

however the impact of such systems on speech intelligibility is not well understood.  The

SII calculation procedures for the one-third octave band method and direct measurement of

the input variables was used to assess improvements in speech intelligibility of the ANC

systems (American National Standards Institute, 1998).  The insertion gain of three ANC

headsets and one external ANC system was measured.  The attenuation for the external

device was found to be 10 dB over a narrow frequency band.  The open ear ANC headsets

achieved comparable reduction at low frequency, but the band width of reduction was much

broader.  The open ear headsets also yielded high frequency attenuation due to their

physical constructs.  The closed ear ANC headset achieved impressive low frequency

attenuation around 20 dB and high frequency attenuation of nearly 40 dB.  The NRR of the

systems was calculated accounting for the transfer function data obtained for each device.

The NCT Noise Buster Extreme NRR was found to be around 5 while the NCT ProActive

NRR was 24.  The remaining systems had NRRs around zero.

Traffic noise recorded at the toll plaza was used to calculate the noise spectrum for

determination of the SII.  For the current conditions at the toll plaza, the SII indicated that
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the environment was poor with respect to communication.  Accounting for the effects of the

ANC systems, the SII changed very little.  The results suggest that the traffic noise level at

the toll plaza overpowers the speech spectrum level and creates a low signal to noise ratio.

Three different traffic scenarios were considered:  average semi-truck traffic, idle semi-truck

traffic, and idle car traffic.  The idle vehicle states were believed to me the most

representative of the actual communication conditions.  The results for idle car noise

suggest that passenger cars noise does not present a problem for speech intelligibility.

Improved systems which increased the signal to noise ratio were modeled and

tested.  The results indicate that use of a sealed ANC headset with a dipole directional

microphone yield a significant improvement in SII, as much as a 0.20 increase for vocal

efforts which are common at the toll plaza.  It was found that level overloading effects are

more significant than low frequency masking.  Results from and investigation into higher

order microphone directivity demonstrated that a good communication system (a SII of 0.75

of above) is achievable for normal vocal effort.

6.2  Recommendations

It is suggested that the possible existence of resonance conditions be investigated in

a subsequent study.  On-site measurements at many locations throughout the toll plaza

could be used to investigate the presence of standing waves.  With on-site measurements,

the results of the beam tracing method could be validated.

Subsequent investigations into modified ANC headsets that improve the signal to

noise ratio and thereby the speech intelligibility are suggested.  Advanced concepts should

integrate adaptive algorithms to achieve the project goals.  Feedforward algorithms are

adaptive and therefore behave differently for different input signals.  As a starting point an

adaptive algorithm may be placed between the directional microphone and the sealed ANC
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headset configuration as discussed in Chapter 5.  If implemented properly, the filter could

provide significant improvements in speech intelligibility by selectively attenuate traffic

noise and preserving speech at a level that does not overload the ear.  Using such a

configuration the signal to noise ratio could be improved over the 6 dB increase due to a

dipole directional microphones alone.  Alternatively, the single channel feedback algorithm

of existing ANC control headsets could be replaced by an adaptive ANC algorithm to yield

similar results.  Due to the adaptive nature of the systems, jury testing may be necessary to

establish speech intelligibility performance.  After an implementation has been identified

which significantly improves the speech intelligibility at the toll plaza, testing of various

embodiments with respect to comfort should be performed.
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Appendix A:  Toll Road Employee Surveys

A.1  Survey 1 and Results

This section includes the first survey distributed to toll road employees and the

results.



121

Noise Survey

The Institute for Safe, Quiet, and Durable Highways
Herrick Laboratories
Purdue University – West Lafayette Campus

1. How old are you?
a)  16 - 25  years b)  26 - 35  years c)  36 - 45  years d)  46 - 55 years e) 55+ years

2. How long have you worked regularly in a tollbooth?
a)  0 - 6 months b)  7 - 12 months c)  1 - 2 years d)  2 - 5 years e)  5+ years

3. Do you have known hearing loss?
a)  Yes b)  No

4. Where do you spend the majority of your time while working?  (If you work in multiple
positions, please select the position you work at the most and answer the rest of the questions with
that position in mind.)

a)  Body entirely in a toll-booth
b)  Body partially in a toll-booth
c)  Body entirely outside of a toll-booth, but still near the road
d)  Most time spent outdoors away from the tollbooths
e)  Most time spent indoor, but not in a tollbooth

5. How long are the work shifts during which you are exposed to traffic noise?
a)  0 – 2 Hours b)  4 Hours c)  6 Hours d)  8 Hours e)  More than 8 Hours

6. With respect to noise, how would you consider the conditions under which you
normally work ?
a)  Very Poor b)  Poor c)  Satisfactory d)  Good e)  Excellent

7. This type of vehicle’s noise emissions is annoying.  (For each of the blanks below write
the letter a, b, c, d, or e that corresponds to your answer.)
a)  Strongly Agree b)  Agree c)  Undecided d)  Disagree e)  Strongly Disagree

• Semi-Trucks ___ Braking ___ Accelerating ___ Idling
• Buses and Delivery Trucks ___ Braking ___ Accelerating ___ Idling
• Cars, Vans, SUVs ___ Braking ___ Accelerating ___ Idling

• Motorcycles ___ Braking ___ Accelerating ___ Idling

8. Please indicate any other type of vehicle noise that you find annoying.

9. Do you get noise induced headaches at work?
a)  Very Frequently b)  Frequently c)  Occasionally d)  Rarely e)  Very Rarely f)  Never

10. Do you get headaches while not at work?
a)  Very Frequently b)  Frequently c)  Occasionally d)  Rarely e)  Very Rarely f)  Never

11. With respect to noise at work, do your ears often feel “tired” after work?
a)  Very Frequently b)  Frequently c)  Occasionally d)  Rarely e)  Very Rarely f)  Never
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12. As a result of background noise, do you often find it difficult to communicate with
drivers?
a)  Very Frequently b)  Frequently c)  Occasionally d)  Rarely e)  Very Rarely f)  Never

13. What other noise related problems do you encounter at the toll plaza?

14.  Would you object to the idea of communicating with drivers through a speaker?
a)  Yes b)  No

Any suggestions you have that might improve the noise conditions in your workplace would
be graciously accepted.  You are more than welcome to comment on any noise factors not
considered in this survey that you feel need attention.

Please feel free to use the space below.
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Question No.
1 2 3 4 5 6 9 10 11 12 14

Subject No.
1 c e a a e a a c a a b

2 b d a a d a c c c b b

3 c d a e e a c c b a a

4 a d a b e b e d c

5 d b b a d d f c c b b

6 d d b a e c c d c a a

7 c a b a d c c e d a b

8 e e b a d c c e c b a

9 d b b a e a c e a b

10 d e b b e a b b b a a

11 b a b b e b c c c a a

12 e b b a d c f f f a a

13 a b b b d c c d c b b

14 c c b a e b f d f c a

15 c c b a d c f c e c a

16 c e b a e a a c b a b

17 c a b a d a f f e a b

18 e e b a e b d d b a a

19 d e b a d b c d b a b

20 c b b a d c e e f b a

21 d b b a e b d e d a b

22 c b b b e c c d c a b

23 d e b b d b c d b a a

24 d e b b d b c d b b b

25 e e b a e b e e c b a

26 a c b a e b b c a a b

27 c a b b d, e b c d c a b

28 d e b b b, d b b c c b b

29 d a b a d c d d c b b

Response
a 3 5 4 19 0 7 2 0 2 17 12

b 2 7 25 9 0 12 3 1 7 9 16

c 10 3 0 0 0 9 13 9 12 2 0

d 10 4 0 0 13 1 3 11 2 0 0

e 4 10 0 1 14 0 3 6 2 0 0

f 0 0 0 0 0 0 5 2 3 0 0

Total 29 29 29 29 27 29 29 29 28 28 28

Table A.1:  Results for Survey 1.
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Subject
No

S.T.
Brake

S.T.
Accel

S.T.
Idle

Buses
Brake

Buses
Accel

Buses
Idle

Cars
Brake

Cars
Accel

Cars
Idle

M.C.
Brake

M.C.
Accel

M.C
Idle

1 a a a a a a b b a a

2 a a a d d d d d d b d b

3 a a a b a a a a a a a a

4 b a b b a b d d d a a a

5 b b c b b b b a c a a b

6 b c c c a c b b c a a b

7 b a b c b c d d d c a a

8 d b b b b b d d d a a a

9 a a

10 a a a b a a a a

11 a a a b a a b b b b a a

12 b c d d d d e e e d a d

13 b a a b a b c b c c a c

14 a b c a b c a b c a a a

15 c c c c c c c c c c c c

16 a a a a a a d d d d b d

17 a a a b b b b b c a a a

18 a a a a a a a a a a

19 a a a a a a c c c b a a

20 e e e e

21 a a d a a a b b b d a a

22 c a b d d d b b b a a a

23 b b b b a c c c c c b c

24 b b b a c c b b d b b

25 a a a a a a a

26 a d c d a b e d c a a a

27 a a a c c a a a

28 a a b b a c b a d b a c

29 b a c c b e d d b e e e

Response

a 16 18 11 7 16 7 3 5 2 12 20 16

b 9 5 7 10 6 6 7 9 6 4 3 4

c 2 3 6 5 1 7 6 3 9 4 1 4

d 1 1 2 4 3 3 6 7 6 4 1 2

e 0 0 1 0 0 2 2 1 2 1 2 1

Total 28 27 27 26 26 25 24 25 25 25 27 27

Table A.2:  Results for Question 7, Survey 1.
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Written responses to Question 8, Survey 1
• Horns (trucks and cars)
• Air Brakes releasing
• Semi tire blow out
• Jake Brakes
• Load trucks and motor cycles
• Straight Pipes
• Un-muffled dual exhaust especially on pick-up trucks
• Snow plows scraping pavement in winter
• All types
• Bus traffic is extremely loud and the exhaust is horrible
• Glass-pack mufflers
• Dual exhausts

Written responses to Question 13, Survey 1
• Difficult to hear intercom and Road Radio
• Road Maintenance should have a different frequency (especially in the winter)
• Car radios
• Car horns under canopy
• Potholes
• Non business communication and idle chatter between toll attendants on the

intercom system
• Phone

Any suggestions you have that might improve the noise conditions in your
workplace would be graciously accepted.  You are more than welcome to comment
on any noise factors not considered in this survey that you feel need attention.

• Working through a window versus fully open door
• Maintenance should have a there own intercom
• Sound proofing booth and making them completely enclosed
• Headset was great but too awkward to wear for a period of time with cord.  Patrons

also thought that I was listening to a radio instead of paying attention to them.
Would like head set if small and cord was not in the way.

• Vehicle horns from impatient drivers should be prohibited.  Extreme acceleration of
motorcycles should not be allowed.  Also sound proofing the booths would be a
great help.
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A.2  Survey 2 and Results

This section includes the second survey distributed to toll road employees and the

results.
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Noise Survey – follow up

The Institute for Safe, Quiet, and Durable Highways
Herrick Laboratories
Purdue University – West Lafayette Campus

This survey should be administer to employees who have completed the first “Noise Survey” and were able
to use the NCT Inc. Noise Buster Extreme active noise control headphones.  Please circle the answer that
agrees with your selection.

1. How long did you use the active noise control headphones?
a)  0 – 2 Hours b)  4 Hours c)  6 Hours d)  8 Hours e)  More than 8 Hours

2. In terms of reducing traffic/road noise annoyance, please rate the effectiveness of the
headphones.

a)  Excellent b)  Above Average c)  Average d)  Below Average e)  Extremely Poor

3. The overall working environment was more pleasant with the headphones on.
a)  Strongly Agree b)  Agree c)  Undecided d)  Disagree e)  Strongly Disagree

4. The headphones improved my ability to communicate with customers.
a)  Strongly Agree b)  Agree c)  Undecided d)  Disagree e)  Strongly Disagree

5. The headphones were comfortable to wear, and I am willing to use them throughout the work
day.

a)  Strongly Agree b)  Agree c)  Undecided d)  Disagree e)  Strongly Disagree

6. Neglecting any comfort or discomfort, I was impressed with the performance of the headphones.
a)  Strongly Agree b)  Agree c)  Undecided d)  Disagree e)  Strongly Disagree

7. The headphones you used might have given the appearance that you were listening to a personal stereo.
Would you object to wearing cordless headphones that were just as effective but looked like a
communication headset?  (Perhaps the headphones would contain a microphone).
a)  Yes, I would object b)  No, I would not object

8. How old are you?
a)  16 - 25  years b)  26 - 35  years c)  36 - 45  years d)  46 - 55 years e) 55+ years

9. How long have you worked regularly in a toll booth?
a)  0 - 6 months b)   7 - 12 months c)  1 - 2 years d)  2 - 5 years e)  5+ years

10. Do you have known hearing loss?
a)  Yes b)  No

11. How long are the work shifts during which you are exposed to traffic noise?
a)  0 – 2 Hours b)  4 Hours c)  6 Hours d)  8 Hours e)  More than 8 Hours

12.  Please rate the overall value of the active noise control headphones in the work environment.
a)  Excellent b)  Above Average c)  Average d)  Below Average e)  Extremely Poor

Please feel free to use the space below or the back side of this sheet to provide additional comments
concerning the headphones.
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Question No.

1 2 3 4 5 6 7 8 9 10 11 12
Subject

No

1 a d e e e e a d e a d e

2 c b b b b b b c b b d b

3 a c b e b a d e b e e

4 a b c c d b b d d b d c

5 b c b d b b b e b d c

6 c a a a a a b c a b d, e a

7 b b c b c b b d b b d b

8 a a a b b a b a b b d a

9 a b b c a b b d e b d b

10 a b b b d b a c e b e b

11 a b c c c b b c b b d, e b

12 a c c e e c b d e b e c

13 b a b a c a b c e a e a

14 b c d d d c a d a b d c

15 d c b c e b b a a b d, e b

16 a c c c d c a c c b d c

17 a a a b c a b c a b d a

18 a b b b e b b c e b d b

19 a c e e e c b b a b d b

20 a c c d e c a c b b d c

21 a d d d d d a e e b d d

22 a d d c d d b e b b d d

23 c b c d d c b d e b e c

24 d a a d b b b d b b e a

25 a b d d e b a c d b d c

26 a c b d d b a c d b d c

27 a c b c d b a c c b d c

28 d b b b d b b b d a d b

29 a c c b c b b d e a d c

Response

a 19 5 4 2 2 4 10 2 5 4 0 5

b 4 10 11 8 4 16 19 2 7 25 0 9

c 3 11 8 7 5 6 0 12 2 0 0 11

d 3 3 4 8 10 2 0 10 4 0 20 2

e 0 0 2 4 7 1 0 2 11 0 6 2

Total 29 29 29 29 28 29 29 28 29 29 26 29

Table A.3:  Results for Survey 2.
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Please feel free to use the space below or the back side of this sheet to provide
additional comments concerning the headphones.

• Patrons were rude because they thought I was using a stereo system
• In regards to question #5, the headphones weren’t uncomfortable, they would just

take a getting use to
• The headphones blocked the road noise but also made it hard to hear anyone

speaking to you
• Couldn’t hear patrons…sounded like they were in the distance.  I don’t like things

over my ears (irritating)
• Headphones hurt with glasses on
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Appendix B:  Toll Plaza Beam Tracing Model

B.1  Model Diagram

The toll plaza and various noise control solutions were modeled using a beam

tracing method.  The schematic of the model is shown in Figure B.1.  The figure includes

the source location and number in addition to lane position.  This schematic will serve as a

key to the following figures presented in Appendix B.
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Figure B.1:  Schematic of the toll plaza model.
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B.2  Frequency Dependence of Passive Noise Control Solutions

The figure in this section display the frequency dependence of the noise control

solutions evaluated in the beam tracing model of the toll plaza.  All semi-truck sources were

activated.  Each figure shows the response at a particular window location.
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Figure B.2: Response at window location of 68 meters (window south of lane 1), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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Figure B.3: Response at window location of 62 meters (window south of lane 2), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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Figure B.4: Response at window location of 56 meters (window south of lane 3), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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Figure B.5: Response at window location of 50 meters (window south of lane 4), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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Figure B.6: Response at window location of 44 meters (window south of lane 5), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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Figure B.7: Response at window location of 37 meters (window south of lane 6), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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Figure B.8: Response at window location of 31 meters (window south of lane 7), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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Figure B.9: Response at window location of 25 meters (window south of lane 8), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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Figure B.10: Response at window location of 19 meters (window south of lane 9), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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Figure B.11: Response at window location of 36 meters (window north of lane 7), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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Figure B.12: Response at window location of 30 meters (window north of lane 8), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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Figure B.13: Response at window location of 23 meters (window north of lane 9), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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Figure B.14: Response at window location of 17 meters (window north of lane 10), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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Figure B.15: Response at window location of 11 meters (window north of lane 11), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.



147

Figure B.16: Response at window location of 5 meters (window north of lane 12), all
semi-truck sources active.  ∇ level of existing toll plaza; * level with
absorbing canopy; O level with absorbing barriers; ÿ  level with absorbing
barriers; + level with all modifications.
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B.3  Overall Level per Source Pair

The figure in this section display the of the overall level of toll plaza models for a

single source pair activated at a time.  Sources represented semi-truck vehicles.  Each figure

shows the response at all window locations for a single source pair.
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Figure B.17: Overall sound pressure level for sources 1 and 2 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.18: Overall sound pressure level for sources 3 and 4 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.19: Overall sound pressure level for sources 5 and 6 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.20: Overall sound pressure level for sources 7 and 8 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.21: Overall sound pressure level for sources 9 and 10 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.22: Overall sound pressure level for sources 11 and 12 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.23: Overall sound pressure level for sources 13 and 14 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.24: Overall sound pressure level for sources 15 and 16 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.25: Overall sound pressure level for sources 17 and 18 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.26: Overall sound pressure level for sources 19 and 20 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.27: Overall sound pressure level for sources 21 and 22 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.28: Overall sound pressure level for sources 23 and 24 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.29: Overall sound pressure level for sources 25 and 26 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.30: Overall sound pressure level for sources 27 and 28 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.31: Overall sound pressure level for sources 29 and 30 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.32: Overall sound pressure level for sources 31 and 32 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.33: Overall sound pressure level for sources 33 and 34 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.34: Overall sound pressure level for sources 35 and 36 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.35: Overall sound pressure level for sources 37 and 38 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.36: Overall sound pressure level for sources 39 and 40 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.37: Overall sound pressure level for sources 41 and 42 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.38: Overall sound pressure level for sources 43 and 44 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.39: Overall sound pressure level for sources 45 and 46 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.40: Overall sound pressure level for sources 47 and 48 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.41: Overall sound pressure level for sources 49 and 50 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.42: Overall sound pressure level for sources 51 and 52 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.43: Overall sound pressure level for sources 53 and 54 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.44: Overall sound pressure level for sources 55 and 56 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.



177

Figure B.45: Overall sound pressure level for sources 57 and 58 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.46: Overall sound pressure level for sources 59 and 60 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.47: Overall sound pressure level for sources 61 and 62 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.48: Overall sound pressure level for sources 63 and 64 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.49: Overall sound pressure level for sources 65 and 66 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.50: Overall sound pressure level for sources 67 and 68 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.51: Overall sound pressure level for sources 69 and 70 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.52: Overall sound pressure level for sources 71 and 72 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.53: Overall sound pressure level for sources 73 and 74 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.54: Overall sound pressure level for sources 75 and 76 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.55: Overall sound pressure level for sources 77 and 78 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.56: Overall sound pressure level for sources 79 and 80 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.57: Overall sound pressure level for sources 81 and 82 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.58: Overall sound pressure level for sources 83 and 84 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.59: Overall sound pressure level for sources 85 and 86 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.60: Overall sound pressure level for sources 87 and 88 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.61: Overall sound pressure level for sources 89 and 90 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.62: Overall sound pressure level for sources 91 and 92 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.63: Overall sound pressure level for sources 93 and 94 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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Figure B.64: Overall sound pressure level for sources 95 and 96 as a function of window
location.  ∇ level of existing toll plaza; * level with absorbing canopy; O
level with absorbing barriers; ÿ  level with absorbing barriers; + level is all
modifications.
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B.4  Direct Field Study, Semi-Truck Sources

To confirm the importance of the direct field, all elements of the model removed

expect for the ground.  One lane of semi-truck source were activated at a time.  The overall

level at the for test model was compared to the same case of the reference model.  The only

meaningful information is for window(s) serving the lane with active sources.  Each figure

represents the response at all window locations for a particular lane of sources.
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Figure B.65: Overall level for all sources in lane 1, semi-truck sources.  ∇ level of existing
toll plaza; * level with of direct field validation model.
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Figure B.66: Overall level for all sources in lane 2, semi-truck sources.  ∇ level of existing
toll plaza; * level with of direct field validation model.
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Figure B.67: Overall level for all sources in lane 3, semi-truck sources.  ∇ level of existing
toll plaza; * level with of direct field validation model.
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Figure B.68: Overall level for all sources in lane 4, semi-truck sources.  ∇ level of existing
toll plaza; * level with of direct field validation model.
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Figure B.69: Overall level for all sources in lane 5, semi-truck sources.  ∇ level of existing
toll plaza; * level with of direct field validation model.
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Figure B.70: Overall level for all sources in lane 6, semi-truck sources.  ∇ level of existing
toll plaza; * level with of direct field validation model.
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Figure B.71: Overall level for all sources in lane 7, semi-truck sources.  ∇ level of existing
toll plaza; * level with of direct field validation model.
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Figure B.72: Overall level for all sources in lane 8, semi-truck sources.  ∇ level of existing
toll plaza; * level with of direct field validation model.
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Figure B.73: Overall level for all sources in lane 9, semi-truck sources.  ∇ level of existing
toll plaza; * level with of direct field validation model.



207

Figure B.74: Overall level for all sources in lane 10, semi-truck sources.  ∇ level of
existing toll plaza; * level with of direct field validation model.
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Figure B.75: Overall level for all sources in lane 11, semi-truck sources.  ∇ level of
existing toll plaza; * level with of direct field validation model.
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Figure B.76: Overall level for all sources in lane 12, semi-truck sources.  ∇ level of
existing toll plaza; * level with of direct field validation model.
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B.5  Direct Field Study, Car Sources

To confirm the importance of the direct field, all elements of the model removed

expect for the ground.  One lane of car source were activated at a time.  The overall level at

the for test model was compared to the same case of the reference model.  The only

meaningful information is for window(s) serving the lane with active sources.  Each figure

represents the response at all window locations for a particular lane of sources.
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Figure B.77: Overall level for all sources in lane 1, car sources.  ∇ level of existing toll
plaza; * level with of direct field validation model.
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Figure B.78: Overall level for all sources in lane 2, car sources.  ∇ level of existing toll
plaza; * level with of direct field validation model.
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Figure B.79: Overall level for all sources in lane 3, car sources.  ∇ level of existing toll
plaza; * level with of direct field validation model.
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Figure B.80: Overall level for all sources in lane 4, car sources.  ∇ level of existing toll
plaza; * level with of direct field validation model.
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Figure B.81: Overall level for all sources in lane 5, car sources.  ∇ level of existing toll
plaza; * level with of direct field validation model.
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Figure B.82: Overall level for all sources in lane 6, car sources.  ∇ level of existing toll
plaza; * level with of direct field validation model.
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Figure B.83: Overall level for all sources in lane 7, car sources.  ∇ level of existing toll
plaza; * level with of direct field validation model.
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Figure B.84: Overall level for all sources in lane 8, car sources.  ∇ level of existing toll
plaza; * level with of direct field validation model.
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Figure B.85: Overall level for all sources in lane 9, car sources.  ∇ level of existing toll
plaza; * level with of direct field validation model.
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Figure B.86: Overall level for all sources in lane 10, car sources.  ∇ level of existing toll
plaza; * level with of direct field validation model.



221

Figure B.87: Overall level for all sources in lane 11, car sources.  ∇ level of existing toll
plaza; * level with of direct field validation model.
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Figure B.88: Overall level for all sources in lane 12, car sources.  ∇ level of existing toll
plaza; * level with of direct field validation model.


	Outside Cover
	Inside Cover
	Form 1700
	Technical Summary
	Table of Contents
	List of Tables
	List of Figures
	Nomenclauture
	Implementation Report
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	List of References
	Appendices
	Appendix A
	Appendix B




